如何从k个元素的集合中生成长度为n的所有排列?
例如,我有一组k=5
元素[1,2,3,4,5]
,我想要长度为n=2
的所有排列。
1,2
1,3
1,4
1,5
2,1
etc etc.
问题是我不能使用STL、外部数学库等。
我尝试的是用Heap的算法生成所有元素的所有排列,然后n个元素的所有排列包含在所有k个排列的前n个数中,我可以只截断并删除重复项,但这样的复杂性太高了(n!)
我知道这个问题有一个很好的解决方案,因为我在有关置换字符串的问题中看到过使用额外的模块/库来解决这个问题。
额外信息:我只需要用它来强制解决不平衡的赋值问题,而当我被允许强行解决问题时,匈牙利算法似乎太长了。我的方法没有接近允许的执行时间,因为当我有一个大小为8x3的数组时,我的算法需要8!当它肯定可以优化到一个小得多的数字时进行比较。解决方案
我认为可以分两步完成,首先,从一组n个元素中生成k个元素的组合,然后打印每个组合的排列。我测试了这段代码,运行良好:
#include <iostream>
using namespace std;
void printArr(int a[], int n, bool newline = true) {
for (int i=0; i<n; i++) {
if (i > 0) cout << ",";
cout << a[i];
}
if (newline) cout << endl;
}
// Generating permutation using Heap Algorithm
void heapPermutation(int a[], int n, int size) {
// if size becomes 1 then prints the obtained permutation
if (size == 1) {
printArr(a, n);
return;
}
for (int i=0; i<size; i++) {
heapPermutation(a, n, size-1);
// if size is odd, swap first and last element, otherwise swap ith and last element
swap(a[size%2 == 1 ? 0 : i], a[size-1]);
}
}
// Generating permutation using Heap Algorithm
void heapKPermutation(int a[], int n, int k, int size) {
// if size becomes 1 then prints the obtained permutation
if (size == n - k + 1) {
printArr(a + n - k, k);
return;
}
for (int i=0; i<size; i++) {
heapKPermutation(a, n, k, size-1);
// if size is odd, swap first and last element, otherwise swap ith and last element
swap(a[size%2 == 1 ? 0 : i], a[size-1]);
}
}
void doKCombination(int a[], int n, int p[], int k, int size, int start) {
int picked[size + 1];
for (int i = 0; i < size; ++i) picked[i] = p[i];
if (size == k) {
// We got a valid combination, use the heap permutation algorithm to generate all permutations out of it.
heapPermutation(p, k, k);
} else {
if (start < n) {
doKCombination(a, n, picked, k, size, start + 1);
picked[size] = a[start];
doKCombination(a, n, picked, k, size + 1, start + 1);
}
}
}
// Generate combination of k elements out of a set of n
void kCombination(int a[], int n, int k) {
doKCombination(a, n, nullptr, k, 0, 0);
}
int main()
{
int a[] = {1, 2, 3, 4, 5};
cout << "n=1, k=1, a=";
printArr(a, 1);
kCombination(a, 1, 1);
cout << "n=2, k=1, a=";
printArr(a, 2);
kCombination(a, 2, 1);
cout << "n=3, k=2, a=";
printArr(a, 3);
kCombination(a, 3, 2);
cout << "n=5, k=2, a=";
printArr(a, 5);
kCombination(a, 5, 2);
return 0;
}
结果为:
n=1, k=1, a=1
1
n=2, k=1, a=1,2
2
1
n=3, k=2, a=1,2,3
2,3
3,2
1,3
3,1
1,2
2,1
n=5, k=2, a=1,2,3,4,5
4,5
5,4
3,5
5,3
3,4
4,3
2,5
5,2
2,4
4,2
2,3
3,2
1,5
5,1
1,4
4,1
1,3
3,1
1,2
2,1
相关文章