使用单调堆栈背后的直觉

2022-02-24 00:00:00 algorithm stack c++

我正在解决LeetCode.com上的问题:

给定整数A的数组,求min(B)之和,其中B的范围在A的每个(连续)子数组上。由于答案可能很大,因此返回以10^9+7为模的答案。

输入:[3,1,2,4]
产量:17
说明:子数组有[3]、[1]、[2]、[4]、[3,1]、[1,2]、[2,4]、[3,1,2]、[1,2,4]、[3,1,2,4]。最小值为3、1、2、4、1、1、2、1、1、1。总和为17。

Ahighly upvoted solution如下:

class Solution {
public:
  int sumSubarrayMins(vector<int>& A) {
    stack<pair<int, int>> in_stk_p, in_stk_n;
    // left is for the distance to previous less element
    // right is for the distance to next less element
    vector<int> left(A.size()), right(A.size());

    //initialize
    for(int i = 0; i < A.size(); i++) left[i] =  i + 1;
    for(int i = 0; i < A.size(); i++) right[i] = A.size() - i;

    for(int i = 0; i < A.size(); i++){
      // for previous less
      while(!in_stk_p.empty() && in_stk_p.top().first > A[i]) in_stk_p.pop();
      left[i] = in_stk_p.empty()? i + 1: i - in_stk_p.top().second;
      in_stk_p.push({A[i],i});

      // for next less
      while(!in_stk_n.empty() && in_stk_n.top().first > A[i]){
        auto x = in_stk_n.top();in_stk_n.pop();
        right[x.second] = i - x.second;
      }
      in_stk_n.push({A[i], i});
    }

    int ans = 0, mod = 1e9 +7;
    for(int i = 0; i < A.size(); i++){
      ans = (ans + A[i]*left[i]*right[i])%mod;
    }
    return ans;
  }
};
我的问题是:为此使用单调递增堆栈背后的直觉是什么?它如何帮助计算各种子数组中的最小值?


解决方案

将数组可视化为折线图,将(局部)最小值作为山谷。每个值都与范围相关,该范围从上一个较小的值(如果有)之后延伸到下一个较小的值(如果有)之前。(在考虑包含该值的单个子数组时,即使值大于其相邻值也很重要。)变量leftright跟踪该范围。

认识到值分别隐藏了每个方向上大于它的每个值,堆栈出于两个目的维护了以前未隐藏的最小值的列表:标识新小数字的范围向后延伸了多远,以及(同时)使失效的最小值的范围向前延伸了多远。代码为每个目的使用单独的堆栈,但没有必要:每个堆栈在(外部)循环的每次迭代后都具有相同的内容。

相关文章