确定整数位数的有效方法
在 C++ 中确定整数中有多少位的非常高效方法是什么?
What is a very efficient way of determining how many digits there are in an integer in C++?
推荐答案
好吧,假设您知道整数的大小,最有效的方法是查找.应该比更短的基于对数的方法更快.如果您不关心计算-",请删除 + 1.
Well, the most efficient way, presuming you know the size of the integer, would be a lookup. Should be faster than the much shorter logarithm based approach. If you don't care about counting the '-', remove the + 1.
#include <climits>
// generic solution
template <class T>
int numDigits(T number)
{
int digits = 0;
if (number < 0) digits = 1; // remove this line if '-' counts as a digit
while (number) {
number /= 10;
digits++;
}
return digits;
}
// partial specialization optimization for 64-bit numbers
template <>
int numDigits(int64_t x) {
if (x == INT64_MIN) return 19 + 1;
if (x < 0) return digits(-x) + 1;
if (x >= 10000000000) {
if (x >= 100000000000000) {
if (x >= 10000000000000000) {
if (x >= 100000000000000000) {
if (x >= 1000000000000000000)
return 19;
return 18;
}
return 17;
}
if (x >= 1000000000000000)
return 16;
return 15;
}
if (x >= 1000000000000) {
if (x >= 10000000000000)
return 14;
return 13;
}
if (x >= 100000000000)
return 12;
return 11;
}
if (x >= 100000) {
if (x >= 10000000) {
if (x >= 100000000) {
if (x >= 1000000000)
return 10;
return 9;
}
return 8;
}
if (x >= 1000000)
return 7;
return 6;
}
if (x >= 100) {
if (x >= 1000) {
if (x >= 10000)
return 5;
return 4;
}
return 3;
}
if (x >= 10)
return 2;
return 1;
}
// partial specialization optimization for 32-bit numbers
template<>
int numDigits(int32_t x)
{
if (x == INT32_MIN) return 10 + 1;
if (x < 0) return numDigits(-x) + 1;
if (x >= 10000) {
if (x >= 10000000) {
if (x >= 100000000) {
if (x >= 1000000000)
return 10;
return 9;
}
return 8;
}
if (x >= 100000) {
if (x >= 1000000)
return 7;
return 6;
}
return 5;
}
if (x >= 100) {
if (x >= 1000)
return 4;
return 3;
}
if (x >= 10)
return 2;
return 1;
}
// partial-specialization optimization for 8-bit numbers
template <>
int numDigits(char n)
{
// if you have the time, replace this with a static initialization to avoid
// the initial overhead & unnecessary branch
static char x[256] = {0};
if (x[0] == 0) {
for (char c = 1; c != 0; c++)
x[c] = numDigits((int32_t)c);
x[0] = 1;
}
return x[n];
}
相关文章