从 Numpy 矩阵构造 Python 集
问题描述
我正在尝试执行以下操作
I'm trying to execute the following
>> from numpy import *
>> x = array([[3,2,3],[4,4,4]])
>> y = set(x)
TypeError: unhashable type: 'numpy.ndarray'
如何轻松高效地创建包含 Numpy 数组中所有元素的集合?
How can I easily and efficiently create a set with all the elements from the Numpy array?
解决方案
如果你想要一组元素,这里有另一种可能更快的方法:
If you want a set of the elements, here is another, probably faster way:
y = set(x.flatten())
PS:在x.flat
、x.flatten()
和x.ravel()之间进行比较后
在 10x100 阵列上,我发现它们都以大致相同的速度执行.对于 3x3 数组,最快的版本是迭代器版本:
PS: after performing comparisons between x.flat
, x.flatten()
, and x.ravel()
on a 10x100 array, I found out that they all perform at about the same speed. For a 3x3 array, the fastest version is the iterator version:
y = set(x.flat)
我会推荐它,因为它是内存成本较低的版本(它可以很好地随着数组的大小而扩展).
which I would recommend because it is the less memory expensive version (it scales up well with the size of the array).
PPS:还有一个 NumPy 函数可以做类似的事情:
PPS: There is also a NumPy function that does something similar:
y = numpy.unique(x)
这确实会生成一个与 set(x.flat)
具有相同元素的 NumPy 数组,但它是一个 NumPy 数组.这非常快(几乎快 10 倍),但是如果你需要一个 set
,那么执行 set(numpy.unique(x))
会比另一个慢一点程序(构建一个集合需要很大的开销).
This does produce a NumPy array with the same element as set(x.flat)
, but as a NumPy array. This is very fast (almost 10 times faster), but if you need a set
, then doing set(numpy.unique(x))
is a bit slower than the other procedures (building a set comes with a large overhead).
相关文章