从集合中随机选择?Python

2022-01-17 00:00:00 python list set

问题描述

我正在研究猜谜游戏的人工智能部分.我想让 AI 从这个列表中随机选择一个字母.我将其作为一组进行,因此我可以轻松地从列表中删除字母,因为它们在游戏中被猜到,因此不再被猜到.

I'm working on an AI portion of a guessing game. I want the AI to select a random letter from this list. I'm doing it as a set so I can easily remove letters from the list as they are guessed in the game and are therefore no longer available to be guessed again.

它说 set 对象不可索引.我该如何解决这个问题?

it says set object isn't indexable. How can I work around this?

import random 
aiTurn=True

while aiTurn == True:
    allLetters = set(list('abcdefghijklmnopqrstuvwxyz'))
    aiGuess=random.choice(allLetters)



    print (aiGuess) 


解决方案

注意(2020 年 10 月): 从 v3.9 开始,Python 有 正式弃用 random.sample() 在集合上工作,官方指导是在传入之前将集合显式转换为列表或元组,但这并不能解决效率问题.

Note (Oct. 2020): as of v3.9, Python has officially deprecated random.sample() working on sets, with the official guidance being to explicitly convert the set to a list or tuple before passing it in, though this doesn't solve the efficiency problems.

>>> random.sample(set('abcdefghijklmnopqrstuvwxyz'), 1)
['f']

文档:https://docs.python.org/3/库/random.html#random.sample

请注意,无论您如何从集合中选择随机元素效率极低 - 它所花费的时间与集合的大小成正比,或者如果集合的底层哈希表由于稀疏而变得更糟删除元素.

Note that choosing random elements from a set is extremely inefficient no matter how you do it - it takes time proportional to the size of the set, or worse if the set's underlying hash table is sparse due to removed elements.

相反,您可能应该使用 不同的数据结构有效地支持此操作.

Instead, you should probably use a different data structure that supports this operation efficiently.

相关文章