使用 CUDA 减少矩阵列
我有一个矩阵,我想使用 CUDA 并以最快的方式计算列平均值(归结为简单的总和),即返回一个行向量,其中包含其中每一列的平均值矩阵.用于计算单个列向量之和的求和实现如下所示:
I have a matrix and I would like to use CUDA and in the fastest possible way compute the column-wise mean (boils down to be simply the sum), i.e., return a row vector containing the mean of every column in that matrix. A sum reduction implementation for computing the sum of a single column vector looks like this:
template<typename T>
__global__ void kernelSum(const T* __restrict__ input, T* __restrict__ per_block_results, const size_t n) {
extern __shared__ T sdata[];
size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
// load input into __shared__ memory
T x = 0.0;
if (tid < n) {
x = input[tid];
}
sdata[threadIdx.x] = x;
__syncthreads();
// contiguous range pattern
for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
if(threadIdx.x < offset) {
// add a partial sum upstream to our own
sdata[threadIdx.x] += sdata[threadIdx.x + offset];
}
// wait until all threads in the block have
// updated their partial sums
__syncthreads();
}
// thread 0 writes the final result
if(threadIdx.x == 0) {
per_block_results[blockIdx.x] = sdata[0];
}
}
这被调用为:
int n = ... // vector size
const int BLOCK_SIZE = 1024;
int number_of_blocks = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
double* per_block_results = NULL;
cudaMalloc((void**) &per_block_results, sizeof(double)*(number_of_blocks + 1));
// launch one kernel to compute, per-block, a partial sum
kernelSum<double> <<<number_of_blocks, BLOCK_SIZE, BLOCK_SIZE*sizeof(double)>>>(a, per_block_results, n);
// launch a single block to compute the sum of the partial sums
kernelSum<double> <<<1, number_of_blocks, number_of_blocks*sizeof(double)>>>(per_block_results, per_block_results + number_of_blocks, number_of_blocks);
我可以将此内核推广到任意列数的矩阵,但我受到共享内存的限制.我的 GPU 具有计算能力 3.5
,因此它有 48KB
的共享内存和 1024
的最大块大小,即每个块的线程数.由于我对双精度感兴趣,我有 48*1024/8=6144
最大双倍共享内存.由于减少是按块完成的,我最多可以有 6144(共享内存中的双倍)/1024(块大小)= 6
列,我可以同时计算总和减少.然后减少块大小将允许同时计算更多列,例如6144(共享内存中的双倍)/512(块大小)= 12
.
I could generalize this kernel to matrices of any number of columns but I'm limited by the shared memory. My GPU has compute capability 3.5
so it has 48KB
of shared memory and a maximum block size of 1024
i.e. number of threads per block. Since I am interested in double-precision, I have 48*1024/8= 6144
maximum doubles of shared memory. Since the reduction is done per block, I can have a maximum of 6144 (doubles in shared memory) / 1024 (block size) = 6
columns for which I can compute the sum reduction simultaneously. Reducing the block size then would allow to compute more columns simultaneously e.g. 6144 (doubles in shared memory) / 512 (block size) = 12
.
这种更复杂的策略能否击败矩阵每一列的简单 CPU 循环并调用求和.还有另一种更好的方法吗?
Would this more complex strategy beat the simple CPU loop over every column of the matrix and invoke the sum reduction. Is there yet another better way to do this?
推荐答案
是什么阻止你做这样的事情:
What is stopping you doing something like this:
template<typename T>
__global__ void kernelSum(const T* __restrict__ input,
T* __restrict__ per_block_results,
const size_t lda, const size_t n)
{
extern __shared__ T sdata[];
// Accumulate per thread partial sum
T x = 0.0;
T * p = &input[blockIdx.x * lda];
for(int i=threadIdx.x; i < n; i += blockDim.x) {
x += p[i];
}
// load partial sum into __shared__ memory
sdata[threadIdx.x] = x;
__syncthreads();
// contiguous range pattern
for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
if(threadIdx.x < offset) {
// add a partial sum upstream to our own
sdata[threadIdx.x] += sdata[threadIdx.x + offset];
}
// wait until all threads in the block have
// updated their partial sums
__syncthreads();
}
// thread 0 writes the final result
if(threadIdx.x == 0) {
per_block_results[blockIdx.x] = sdata[0];
}
}
[标准免责声明:用浏览器编写,从未编译或测试,使用风险自负]
[standard disclaimer: written in browser, never compiled or tested, use at own risk]
即.对于块中的每个线程,您只需在 sdata
中输入一个条目即可减少共享内存.每个线程对覆盖整个列输入所需的值求和.那么就没有共享内存限制了,可以对任意大小的列求和,块大小相同.
ie. you only need one entry in sdata
for each thread in the block for the shared memory reduction. Each thread sums as many values as required to cover the full column input. Then there is no shared memory restriction, you can sum any size column with the same block size.
显然,使用每个线程的部分和的想法对您来说是新的,所以这里有一个完整的例子来研究:
Apparently the idea of using per thread partial sums is new to you, so here is a complete example to study:
#include <iostream>
template<typename T>
__global__
void kernelSum(const T* __restrict__ input,
const size_t lda, // pitch of input in words of sizeof(T)
T* __restrict__ per_block_results,
const size_t n)
{
extern __shared__ T sdata[];
T x = 0.0;
const T * p = &input[blockIdx.x * lda];
// Accumulate per thread partial sum
for(int i=threadIdx.x; i < n; i += blockDim.x) {
x += p[i];
}
// load thread partial sum into shared memory
sdata[threadIdx.x] = x;
__syncthreads();
for(int offset = blockDim.x / 2; offset > 0; offset >>= 1) {
if(threadIdx.x < offset) {
sdata[threadIdx.x] += sdata[threadIdx.x + offset];
}
__syncthreads();
}
// thread 0 writes the final result
if(threadIdx.x == 0) {
per_block_results[blockIdx.x] = sdata[0];
}
}
int main(void)
{
const int m = 10000, n = 16;
float * a = new float[m*n];
for(int i=0; i<(m*n); i++) { a[i] = (float)(i%10); }
float *a_;
size_t size_a = m * n * sizeof(float);
cudaMalloc((void **)&a_, size_a);
cudaMemcpy(a_, a, size_a, cudaMemcpyHostToDevice);
float *b_;
size_t size_b = n * sizeof(float);
cudaMalloc((void **)&b_, size_b);
// select number of warps per block according to size of the
// colum and launch one block per column. Probably makes sense
// to have at least 4:1 column size to block size
dim3 blocksize(256);
dim3 gridsize(n);
size_t shmsize = sizeof(float) * (size_t)blocksize.x;
kernelSum<float><<<gridsize, blocksize, shmsize>>>(a_, b_, m, m);
float * b = new float[n];
cudaMemcpy(b, b_, size_b, cudaMemcpyDeviceToHost);
for(int i=0; i<n; i++) {
std::cout << i << " " << b[i] << std::endl;
}
cudaDeviceReset();
return 0;
}
您应该试验相对于矩阵大小的块大小以获得最佳性能,但通常内核执行的每个线程的工作量越多,整体性能就会越好(因为共享内存的减少非常昂贵).您可以在this answer中看到一种针对类似内存带宽限制问题的块和网格大小启发式方法.
You should experiment with the block size relative to your matrix size for optimal performance, but in general the more work per thread the kernel does, the better the overall performance will be (because the shared memory reduction is quite expensive). You can see one approach to block and grid size heuristics for similarly memory bandwidth bound problem in this answer.
相关文章