与 cublasIsamax 相比,thrust::max_element 慢 - 更有效的实现?
我需要一个快速有效的实现来查找 CUDA 中数组中最大值的索引.此操作需要执行多次.我最初为此使用了 cublasIsamax,但是,遗憾的是,它返回了最大绝对值的索引,这不是我想要的.相反,我使用的是thrust::max_element,但是与cublasIsamax 相比速度相当慢.我以以下方式使用它:
I need a fast and efficient implementation for finding the index of the maximum value in an array in CUDA. This operation needs to be performed several times. I originally used cublasIsamax for this, however, it sadly returns the index of the maximum absolute value, which is not what I want. Instead, I'm using thrust::max_element, however the speed is rather slow in comparison to cublasIsamax. I use it in the following manner:
//d_vector is a pointer on the device pointing to the beginning of the vector, containing nrElements floats.
thrust::device_ptr<float> d_ptr = thrust::device_pointer_cast(d_vector);
thrust::device_vector<float>::iterator d_it = thrust::max_element(d_ptr, d_ptr + nrElements);
max_index = d_it - (thrust::device_vector<float>::iterator)d_ptr;
向量中元素的数量在 10'000 到 20'000 之间.推力::max_element 和 cublasIsamax 之间的速度差异相当大.也许我在不知不觉中执行了几次内存事务?
The number of elements in the vector range between 10'000 and 20'000. The difference in speed between thrust::max_element and cublasIsamax is rather big. Perhaps I'm performing several memory transactions without knowing?
推荐答案
更有效的实现是在 CUDA 中编写自己的最大索引缩减代码.cublasIsamax
很可能在后台使用了类似的东西.
A more efficient implementation would be to write your own max-index reduction code in CUDA. It's likely that cublasIsamax
is using something like this under the hood.
我们可以比较 3 种方法:
We can compare 3 approaches:
thrust::max_element
cublasIsamax
- 自定义 CUDA 内核
这是一个完整的例子:
$ cat t665.cu
#include <cublas_v2.h>
#include <thrust/extrema.h>
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
#include <iostream>
#include <stdlib.h>
#define DSIZE 10000
// nTPB should be a power-of-2
#define nTPB 256
#define MAX_KERNEL_BLOCKS 30
#define MAX_BLOCKS ((DSIZE/nTPB)+1)
#define MIN(a,b) ((a>b)?b:a)
#define FLOAT_MIN -1.0f
#include <time.h>
#include <sys/time.h>
unsigned long long dtime_usec(unsigned long long prev){
#define USECPSEC 1000000ULL
timeval tv1;
gettimeofday(&tv1,0);
return ((tv1.tv_sec * USECPSEC)+tv1.tv_usec) - prev;
}
__device__ volatile float blk_vals[MAX_BLOCKS];
__device__ volatile int blk_idxs[MAX_BLOCKS];
__device__ int blk_num = 0;
template <typename T>
__global__ void max_idx_kernel(const T *data, const int dsize, int *result){
__shared__ volatile T vals[nTPB];
__shared__ volatile int idxs[nTPB];
__shared__ volatile int last_block;
int idx = threadIdx.x+blockDim.x*blockIdx.x;
last_block = 0;
T my_val = FLOAT_MIN;
int my_idx = -1;
// sweep from global memory
while (idx < dsize){
if (data[idx] > my_val) {my_val = data[idx]; my_idx = idx;}
idx += blockDim.x*gridDim.x;}
// populate shared memory
vals[threadIdx.x] = my_val;
idxs[threadIdx.x] = my_idx;
__syncthreads();
// sweep in shared memory
for (int i = (nTPB>>1); i > 0; i>>=1){
if (threadIdx.x < i)
if (vals[threadIdx.x] < vals[threadIdx.x + i]) {vals[threadIdx.x] = vals[threadIdx.x+i]; idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
__syncthreads();}
// perform block-level reduction
if (!threadIdx.x){
blk_vals[blockIdx.x] = vals[0];
blk_idxs[blockIdx.x] = idxs[0];
if (atomicAdd(&blk_num, 1) == gridDim.x - 1) // then I am the last block
last_block = 1;}
__syncthreads();
if (last_block){
idx = threadIdx.x;
my_val = FLOAT_MIN;
my_idx = -1;
while (idx < gridDim.x){
if (blk_vals[idx] > my_val) {my_val = blk_vals[idx]; my_idx = blk_idxs[idx]; }
idx += blockDim.x;}
// populate shared memory
vals[threadIdx.x] = my_val;
idxs[threadIdx.x] = my_idx;
__syncthreads();
// sweep in shared memory
for (int i = (nTPB>>1); i > 0; i>>=1){
if (threadIdx.x < i)
if (vals[threadIdx.x] < vals[threadIdx.x + i]) {vals[threadIdx.x] = vals[threadIdx.x+i]; idxs[threadIdx.x] = idxs[threadIdx.x+i]; }
__syncthreads();}
if (!threadIdx.x)
*result = idxs[0];
}
}
int main(){
int nrElements = DSIZE;
float *d_vector, *h_vector;
h_vector = new float[DSIZE];
for (int i = 0; i < DSIZE; i++) h_vector[i] = rand()/(float)RAND_MAX;
h_vector[10] = 10; // create definite max element
cublasHandle_t my_handle;
cublasStatus_t my_status = cublasCreate(&my_handle);
cudaMalloc(&d_vector, DSIZE*sizeof(float));
cudaMemcpy(d_vector, h_vector, DSIZE*sizeof(float), cudaMemcpyHostToDevice);
int max_index = 0;
unsigned long long dtime = dtime_usec(0);
//d_vector is a pointer on the device pointing to the beginning of the vector, containing nrElements floats.
thrust::device_ptr<float> d_ptr = thrust::device_pointer_cast(d_vector);
thrust::device_vector<float>::iterator d_it = thrust::max_element(d_ptr, d_ptr + nrElements);
max_index = d_it - (thrust::device_vector<float>::iterator)d_ptr;
cudaDeviceSynchronize();
dtime = dtime_usec(dtime);
std::cout << "thrust time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
max_index = 0;
dtime = dtime_usec(0);
my_status = cublasIsamax(my_handle, DSIZE, d_vector, 1, &max_index);
cudaDeviceSynchronize();
dtime = dtime_usec(dtime);
std::cout << "cublas time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
max_index = 0;
int *d_max_index;
cudaMalloc(&d_max_index, sizeof(int));
dtime = dtime_usec(0);
max_idx_kernel<<<MIN(MAX_KERNEL_BLOCKS, ((DSIZE+nTPB-1)/nTPB)), nTPB>>>(d_vector, DSIZE, d_max_index);
cudaMemcpy(&max_index, d_max_index, sizeof(int), cudaMemcpyDeviceToHost);
dtime = dtime_usec(dtime);
std::cout << "kernel time: " << dtime/(float)USECPSEC << " max index: " << max_index << std::endl;
return 0;
}
$ nvcc -O3 -arch=sm_20 -o t665 t665.cu -lcublas
$ ./t665
thrust time: 0.00075 max index: 10
cublas time: 6.3e-05 max index: 11
kernel time: 2.5e-05 max index: 10
$
注意事项:
- CUBLAS 返回的索引比其他索引高 1,因为 CUBLAS 使用基于 1 的索引.
- 如果您使用
CUBLAS_POINTER_MODE_DEVICE
, - CUBLAS 可能会更快,但是为了验证,您仍然需要将结果复制回主机.
- 带有
CUBLAS_POINTER_MODE_DEVICE
的 CUBLAS 应该是异步的,因此cudaDeviceSynchronize()
对于我在此处显示的基于主机的时序是可取的.在某些情况下,推力也可以是异步的. - 为了方便和比较 CUBLAS 和其他方法的结果,我将所有非负值用于我的数据.如果您也使用负值,您可能需要调整
FLOAT_MIN
值. - 如果您对性能有疑虑,可以尝试调整
nTPB
和MAX_KERNEL_BLOCKS
参数,看看是否可以最大限度地提高特定 GPU 的性能.内核代码还可以说通过在(两个)线程块减少的最后阶段不小心切换到扭曲同步模式而留下了一些性能. - 线程块缩减内核使用块耗尽/最后??块策略来避免额外内核启动以执行最终缩减的开销.
- CUBLAS returns an index 1 higher than the others because CUBLAS uses 1-based indexing.
- CUBLAS might be quicker if you used
CUBLAS_POINTER_MODE_DEVICE
, however for validation you would still have to copy the result back to the host. - CUBLAS with
CUBLAS_POINTER_MODE_DEVICE
should be asynchronous, so thecudaDeviceSynchronize()
will be desirable for the host based timing I've shown here. In some cases, thrust can be asynchronous as well. - For convenience and results comparison between CUBLAS and the other methods, I am using all nonnegative values for my data. You may want to adjust the
FLOAT_MIN
value if you are using negative values as well. - If you're freaky about performance, you can try tuning the
nTPB
andMAX_KERNEL_BLOCKS
parameters to see if you can max out performance on your specific GPU. The kernel code also arguably leaves some performance on the table by not switching carefully into a warp-synchronous mode for the final stages of the (two) threadblock reduction(s). - The threadblock reduction kernel uses a block-draining/last-block strategy to avoid the overhead of an additional kernel launch to perform the final reduction.
相关文章