使用整数索引访问 boost::graph 中的特定边
这与我昨天遇到的关于使用整数索引访问顶点的问题有关.该线程在这里:
#include #include #include <fstream>#include #include 使用命名空间提升;typedef adjacency_list_traits性状;typedef adjacency_list<vecS, vecS, 定向,属性<顶点名称_t, std::string,属性>>>>,属性::type E = get(edge_index, g);int from[maxnoedges], to[maxnoedges];//我想避免使用这个.//创建边特性::edge_descriptor ed;int eindex = 0;ed = (add_edge(0, 1, g)).first;从[eindex] = 0;to[eindex] = 1;//我想避免使用这个.E[ed] = eindex++;ed = (add_edge(0, 2, g)).first;从[eindex] = 0;to[eindex] = 2;//我想避免使用这个.E[ed] = eindex++;ed = (add_edge(1, 3, g)).first;从[eindex] = 1;to[eindex] = 3;//我想避免使用这个.E[ed] = eindex++;ed = (add_edge(2, 3, g)).first;从[eindex] = 2;to[eindex] = 3;//我想避免使用这个.E[ed] = eindex++;graph_traits <图 >::out_edge_iterator ei, e_end;for (int vindex = 0; vindex < num_vertices(g); vindex++) {printf("顶点 %d 的边缘数为 %d
", vindex, out_degree(vindex, g));for (tie(ei, e_end) = out_edges(vindex, g); ei != e_end; ++ei)printf("从 %d 到 %d
", source(*ei, g), target(*ei, g));}printf("边数为 %d
", num_edges(g));//有没有boost提供的有效方法//代替必须显式维护 from 和 to 数组//开发者的一部分?for (int eindex = 0; eindex
代码构建和编译没有错误.带有 vindex
的 for
循环与 out_edges
和 out_degree
一起工作正常,将整数索引作为参数.
有没有办法对下一个 for
循环做同样的事情,直接使用 boost::graph 数据结构打印边缘?
我查看了以下处理类似问题的线程:
Boost图库:通过 int 类型的索引获取 edge_descriptor 或访问边
建议的答案是使用 unordered_map
.与使用 from[]
和 to[]
数组相比,使用它是否有任何权衡?是否有任何其他计算效率高的访问边缘的方法?
你只能这样做
- 使用不同的图形模型
- 外部边缘索引
概念
您可能对 感兴趣AdjacencyMatrix
概念.它并不完全包含完整的边 ID,但是 AdjacencyMatrix
也可以通过源/目标顶点查找边.
要获得真正完整的边描述符,您可能需要编写自己的图形模型类(对一组现有的 BGL 概念进行建模).您可能还对 grid_graph<>
(每个顶点有一组固定的编号边,其中顶点是网格)感兴趣.
- 如何在 boost::grid_graph 中使用给定的 vertex_descriptor 访问 edge_descriptor - 您可以设计一个全局"编号方案,从而获得线性查找时间
邻接表
这是对上一个答案的修改,显示了外部索引.它类似于您的解决方案.我选择了 bimap
所以至少你可以自动"进行反向查找.
//创建边boost::bimaps::bimapedge_idx;auto new_edge_pair = [&,edge_id=0](int from, int to) mutable {auto single = [&](int from, int to) {auto d = add_edge(from, to, EdgeProperty { edge_id, 4 }, g).first;if (!edge_idx.insert({edge_id++, d}).second)throw std::invalid_argument("重复键");返回d;};auto a = single(from, to), b = single(to, from);转[a] = b;转[b] = a;};new_edge_pair(0, 1);new_edge_pair(0, 2);new_edge_pair(1, 3);new_edge_pair(2, 3);
现在您可以通过边 ID 进行循环:
auto&by_id = edge_idx.left;for (auto const& e : by_id) {std::cout <<边#"<<e.首先<<" 是 (" << source(e.second, g) << " -> " << target(e.second, g) << ")
";}
您可以直接通过 id 查找边:
auto ed = by_id.at(random);std::cout <<随机边#"<<随机<<" 是 (" << source(ed, g) << " -> " << target(ed, g) << ")
";
反向查找有点多余,因为你可以很容易地使用 BGL 做同样的事情:
std::cout <<"反向查找:" <<by_desc.at(ed) <<"
";//反转,虽然不是很壮观std::cout <<"经典属性查找:" <<g[ed].id<<"
";//因为它可以很容易地使用 boost 来完成
生活在 Coliru强>
#include #include #include #include <功能>#include #include #include <随机>std::mt19937 prng { std::random_device{}() };使用命名空间提升;struct VertexProperty { std::string name;};结构边属性{内部标识;双倍容量,residual_capacity;EdgeProperty(int id, double cap, double res = 0): id(id)、容量(cap)、residual_capacity(res){ }};typedef adjacency_list图形;int main() {int nonodes = 4;图 g(nonodes);//反向边缘图auto rev = make_vector_property_map<Graph::edge_descriptor>(get(&EdgeProperty::id, g));//创建边boost::bimaps::bimapedge_idx;auto new_edge_pair = [&,edge_id=0](int from, int to) mutable {auto single = [&](int from, int to) {auto d = add_edge(from, to, EdgeProperty { edge_id, 4 }, g).first;if (!edge_idx.insert({edge_id++, d}).second)throw std::invalid_argument("重复键");返回d;};auto a = single(from, to), b = single(to, from);转[a] = b;转[b] = a;};new_edge_pair(0, 1);new_edge_pair(0, 2);new_edge_pair(1, 3);new_edge_pair(2, 3);//属性映射struct VertexEx {default_color_type 颜色;双倍距离;图::edge_descriptor pred;};自动 idx = get(vertex_index, g);auto vex = make_vector_property_map(idx);自动预测 = make_transform_value_property_map(std::mem_fn(&VertexEx::pred), vex);自动颜色 = make_transform_value_property_map(std::mem_fn(&VertexEx::color), vex);auto dist = make_transform_value_property_map(std::mem_fn(&VertexEx::distance), vex);auto cap = get(&EdgeProperty::capacity, g);auto rescap = get(&EdgeProperty::residual_capacity, g);//算法双流 = boykov_kolmogorov_max_flow(g, cap, rescap, rev, pred, color, dist, idx, 0, 3);std::cout <<流程:"<<流量<<"
";{自动&by_id = edge_idx.left;自动&by_desc = edge_idx.right;for (auto const& e : edge_idx.left) {std::cout <<边#"<<e.首先<<" 是 (" << source(e.second, g) << " -> " << target(e.second, g) << ")
";}int 随机 = prng() % num_edges(g);自动 ed = by_id.at(random);std::cout <<随机边#"<<随机<<" 是 (" << source(ed, g) << " -> " << target(ed, g) << ")
";std::cout <<"反向查找:" <<by_desc.at(ed) <<"
";//反转,虽然不是很壮观std::cout <<"经典属性查找:" <<g[ed].id<<"
";//因为它可以很容易地使用 boost 来完成}}
打印
流程:8边 #0 是 (0 -> 1)边 #1 是 (1 -> 0)边 #2 是 (0 -> 2)边 #3 是 (2 -> 0)边 #4 是 (1 -> 3)边 #5 是 (3 -> 1)边 #6 是 (2 -> 3)边 #7 是 (3 -> 2)随机边 #2 是 (0 -> 2)反向查找:2经典属性查找:2
邻接矩阵
保持一切不变,除了改变模型:
#include typedef adjacency_matrix图形;
现在您获得了按顶点查找的附加功能:
生活在 Coliru强>
std::cout <<在边 # 中找到 (3, 1) 结果"<<by_desc.at(edge(3, 1, g).first) <<"
";
印刷品
在 Edge #5 中找到 (3, 1) 结果
This is related to a question I had yesterday about accessing vertices using integer indices. That thread is here: Accessing specific vertices in boost::graph
The solution there indicated that using vecS as the type for vertices, it is indeed possible to access specific vertices using the integer index. I was wondering if there is a similar method provided by boost to access arbitrary edges efficiently using integer indices.
Attached is a code that depicts the former (valid access of vertices with integer indices) and accessing the edges based on the developer explicitly maintaining two arrays, from[]
and to[]
, that store the source and the target, respectively of the edges.
The code creates the following graph:
#include <boost/config.hpp>
#include <iostream>
#include <fstream>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/adjacency_list.hpp>
using namespace boost;
typedef adjacency_list_traits<vecS, vecS, directedS> Traits;
typedef adjacency_list<
vecS, vecS, directedS,
property<
vertex_name_t, std::string,
property<vertex_index_t, int,
property<vertex_color_t, boost::default_color_type,
property<vertex_distance_t, double,
property<vertex_predecessor_t, Traits::edge_descriptor> > > > >,
property<
edge_index_t, int,
property<edge_capacity_t, double,
property<edge_weight_t, double,
property<edge_residual_capacity_t, double,
property<edge_reverse_t, Traits::edge_descriptor> > > > > >
Graph;
int main() {
int nonodes = 4;
const int maxnoedges = 4;//I want to avoid using this.
Graph g(nonodes);
property_map<Graph, edge_index_t>::type E = get(edge_index, g);
int from[maxnoedges], to[maxnoedges];//I want to avoid using this.
// Create edges
Traits::edge_descriptor ed;
int eindex = 0;
ed = (add_edge(0, 1, g)).first;
from[eindex] = 0; to[eindex] = 1;//I want to avoid using this.
E[ed] = eindex++;
ed = (add_edge(0, 2, g)).first;
from[eindex] = 0; to[eindex] = 2;//I want to avoid using this.
E[ed] = eindex++;
ed = (add_edge(1, 3, g)).first;
from[eindex] = 1; to[eindex] = 3;//I want to avoid using this.
E[ed] = eindex++;
ed = (add_edge(2, 3, g)).first;
from[eindex] = 2; to[eindex] = 3;//I want to avoid using this.
E[ed] = eindex++;
graph_traits < Graph >::out_edge_iterator ei, e_end;
for (int vindex = 0; vindex < num_vertices(g); vindex++) {
printf("Number of outedges for vertex %d is %d
", vindex, out_degree(vindex, g));
for (tie(ei, e_end) = out_edges(vindex, g); ei != e_end; ++ei)
printf("From %d to %d
", source(*ei, g), target(*ei, g));
}
printf("Number of edges is %d
", num_edges(g));
//Is there any efficient method boost provides
//in lieu of having to explicitly maintain from and to arrays
//on part of the developer?
for (int eindex = 0; eindex < num_edges(g); eindex++)
printf("Edge %d is from %d to %d
", eindex, from[eindex], to[eindex]);
}
The code builds and compiles without error. The for
loop with vindex
works fine with out_edges
and out_degree
working fine taking as parameters integer indices.
Is there a way to do likewise for the next for
loop that prints the edges using boost::graph data structures directly?
I looked at the following thread dealing with a similar question:
Boost graph library: Get edge_descriptor or access edge by index of type int
The suggested answer there was to use an unordered_map
. Is there any tradeoff in using this as opposed to having the from[]
and to[]
arrays? Are there any other computationally efficient methods of accessing edges?
You can only do this if you
- use a different graph model
- an external edge index
Concepts
You could be interested in the AdjacencyMatrix
concept. It doesn't exactly sport integral edge ids, but AdjacencyMatrix
has lookup of edge by source/target vertices as well.
To get truly integral edge descriptors, you'd probably need write your own graph model class (modeling a set of existing BGL concepts). You might also be interested in grid_graph<>
(which has a fixed set of numbered edges per vertex, where the vertices are a grid).
- How to access edge_descriptor with given vertex_descriptor in boost::grid_graph - you could devise a "global" numering scheme and thus get linear lookup time
Adjacency List
Here's a modification from the previous answer showing an external index. It's akin to your solution. I chose bimap
so at least you get the reverse lookup "automagically".
// Create edges
boost::bimaps::bimap<int, Graph::edge_descriptor> edge_idx;
auto new_edge_pair = [&,edge_id=0](int from, int to) mutable {
auto single = [&](int from, int to) {
auto d = add_edge(from, to, EdgeProperty { edge_id, 4 }, g).first;
if (!edge_idx.insert({edge_id++, d}).second)
throw std::invalid_argument("duplicate key");
return d;
};
auto a = single(from, to), b = single(to, from);
rev[a] = b;
rev[b] = a;
};
new_edge_pair(0, 1);
new_edge_pair(0, 2);
new_edge_pair(1, 3);
new_edge_pair(2, 3);
Now you can do the loop by edge id:
auto& by_id = edge_idx.left;
for (auto const& e : by_id) {
std::cout << "Edge #" << e.first << " is (" << source(e.second, g) << " -> " << target(e.second, g) << ")
";
}
You can directly lookup an edge by it's id:
auto ed = by_id.at(random);
std::cout << "Random edge #" << random << " is (" << source(ed, g) << " -> " << target(ed, g) << ")
";
The reverse lookup is a bit redundant, because you can do the same using BGL quite easily:
std::cout << "Reverse lookup: " << by_desc.at(ed) << "
"; // reverse, though not very spectacular
std::cout << "Classic property lookup: " << g[ed].id << "
"; // because it can be done using boost easily
Live On Coliru
#include <boost/graph/adjacency_list.hpp>
#include <boost/property_map/transform_value_property_map.hpp>
#include <boost/graph/boykov_kolmogorov_max_flow.hpp>
#include <functional>
#include <iostream>
#include <boost/bimap.hpp>
#include <random>
std::mt19937 prng { std::random_device{}() };
using namespace boost;
struct VertexProperty { std::string name; };
struct EdgeProperty {
int id;
double capacity, residual_capacity;
EdgeProperty(int id, double cap, double res = 0)
: id(id), capacity(cap), residual_capacity(res)
{ }
};
typedef adjacency_list<vecS, vecS, directedS, VertexProperty, EdgeProperty> Graph;
int main() {
int nonodes = 4;
Graph g(nonodes);
// reverse edge map
auto rev = make_vector_property_map<Graph::edge_descriptor>(get(&EdgeProperty::id, g));
// Create edges
boost::bimaps::bimap<int, Graph::edge_descriptor> edge_idx;
auto new_edge_pair = [&,edge_id=0](int from, int to) mutable {
auto single = [&](int from, int to) {
auto d = add_edge(from, to, EdgeProperty { edge_id, 4 }, g).first;
if (!edge_idx.insert({edge_id++, d}).second)
throw std::invalid_argument("duplicate key");
return d;
};
auto a = single(from, to), b = single(to, from);
rev[a] = b;
rev[b] = a;
};
new_edge_pair(0, 1);
new_edge_pair(0, 2);
new_edge_pair(1, 3);
new_edge_pair(2, 3);
// property maps
struct VertexEx {
default_color_type color;
double distance;
Graph::edge_descriptor pred;
};
auto idx = get(vertex_index, g);
auto vex = make_vector_property_map<VertexEx>(idx);
auto pred = make_transform_value_property_map(std::mem_fn(&VertexEx::pred), vex);
auto color = make_transform_value_property_map(std::mem_fn(&VertexEx::color), vex);
auto dist = make_transform_value_property_map(std::mem_fn(&VertexEx::distance), vex);
auto cap = get(&EdgeProperty::capacity, g);
auto rescap = get(&EdgeProperty::residual_capacity, g);
// algorithm
double flow = boykov_kolmogorov_max_flow(g, cap, rescap, rev, pred, color, dist, idx, 0, 3);
std::cout << "Flow: " << flow << "
";
{
auto& by_id = edge_idx.left;
auto& by_desc = edge_idx.right;
for (auto const& e : edge_idx.left) {
std::cout << "Edge #" << e.first << " is (" << source(e.second, g) << " -> " << target(e.second, g) << ")
";
}
int random = prng() % num_edges(g);
auto ed = by_id.at(random);
std::cout << "Random edge #" << random << " is (" << source(ed, g) << " -> " << target(ed, g) << ")
";
std::cout << "Reverse lookup: " << by_desc.at(ed) << "
"; // reverse, though not very spectacular
std::cout << "Classic property lookup: " << g[ed].id << "
"; // because it can be done using boost easily
}
}
Printing
Flow: 8
Edge #0 is (0 -> 1)
Edge #1 is (1 -> 0)
Edge #2 is (0 -> 2)
Edge #3 is (2 -> 0)
Edge #4 is (1 -> 3)
Edge #5 is (3 -> 1)
Edge #6 is (2 -> 3)
Edge #7 is (3 -> 2)
Random edge #2 is (0 -> 2)
Reverse lookup: 2
Classic property lookup: 2
Adjacency Matrix
Keeps everything the same, except for changing the model:
#include <boost/graph/adjacency_matrix.hpp>
typedef adjacency_matrix<directedS, VertexProperty, EdgeProperty> Graph;
And now you get the added capability of lookup by vertices:
Live On Coliru
std::cout << "Finding (3, 1) results in Edge #" << by_desc.at(edge(3, 1, g).first) << "
";
Prints
Finding (3, 1) results in Edge #5
相关文章