如何在 boost::spirit::qi 解析器中使用多态属性?
我希望我的基于 boost::spirit 的解析器能够解析文件,将解析的规则转换为不同的类型,并发出一个包含它找到的所有匹配项的向量.所有作为属性发出的类型都应该从基类型继承,例如:
#include #include #include #include 结构体命令库{虚拟无效 commandAction(){std::cout <<这是一个基本命令.你永远不应该看到这个!"<<std::endl;//Boost::spirit 如果我把它变成纯虚拟的,似乎会生气.显然我做错了.}};struct CommandTypeA : 公共命令库{整数值A;整数值B;虚拟无效 commandAction(){std::cout <<命令类型 A!值 A:" <<值A<<" 值 B: " <<值B<<std::endl;}};struct CommandTypeB : 公共命令库{双值A;std::vector值B;虚拟无效 commandAction(){std::cout <<命令类型 B!valueA:" <<值A<<" 字符串:" <<std::string(valueB.begin(), valueB.end()) <<std::endl;}};struct CommandTypeC : 公共命令库{//代表一种子程序"类型,其中多个命令可以组合在一起std::vector标签名称;std::vector>命令;虚拟无效 commandAction(){std::cout <<子程序:" <<std::string(labelName.start(), labelName.end())<<" 有 " <<命令.大小()<<<" 命令:" <<std::endl;BOOST_FOREACH(boost::shared_ptr<CommandBase>c, 命令){c->commandAction();}}};
现在,我的尝试解析器代码:
namespace ascii = boost::spirit::ascii;命名空间 qi = boost::spirit::qi;使用 qi::lit_;BOOST_FUSION_ADAPT_STRUCT(命令类型A,(整数,值A)(整数,值B))BOOST_FUSION_ADAPT_STRUCT(命令类型B,(双,值A)(std::vector, valueB))BOOST_FUSION_ADAPT_STRUCT(命令类型C,(std::vector, labelName)(std::vector<boost::shared_ptr<CommandBase> >, 命令))templatestruct CommandParser : qi::grammar>(), 船长>{上市:CommandParser() : CommandParser()::base_type(commands){CommandARule = qi::int_ >>qi::int_>>点亮(CMD_A");CommandBRule = qi::int_ >>+(qi::char_) >>点亮(CMD_B");CommandCRule = qi::char_(':') >>lexeme[+(qi::char_ - ';' - ascii::space) >>+ascii::space] >>命令 >>qi::char_(';');命令 = +(CommandARule | CommandBRule | CommandCRule);}受保护:qi::rule<Iterator, boost::shared_ptr<CommandTypeA>, Skipper>命令规则;qi::rule<Iterator, boost::shared_ptr<CommandTypeB>, Skipper>命令规则;qi::rule<Iterator, boost::shared_ptr<CommandTypeC>, Skipper>命令规则;qi::rule<Iterator, std::vector<boost::shared_ptr<CommandBase>>,船长>命令;};std::vector>命令列表;bool 成功 = qi::phrase_parse(StartIterator, EndIterator, CommandParser, ascii::space, commandList);BOOST_FOREACH(boost::shared_ptr<CommandBase>c, commandList){c->commandAction();}
现在,这段代码肯定无法编译,但我希望它能够理解我正在尝试做的事情.
主要的问题是 qi::rules 似乎想要发出实际的结构,而不是对它的引用.
我的问题是:
是否可以强制 qi::rule 发出多态兼容的引用,就像我正在尝试(如果是,如何),这是我尝试完成的最佳方法(即表示解析命令及其参数的可执行对象列表)?
解决方案Spirit 对编译时多态性更友好
typedef 变体命令;
但是,假设您真的想做老式的多态性事情...
不过,在解析过程中即时更新多态对象是一种可靠的方法
- 让你的解析器因语义动作而变得臃肿
- 在语法规则的回溯中造成大量内存泄漏
- 使解析速度非常慢(因为您正在进行各种动态分配).
- 最糟糕的是,这些都不会被优化掉,即使您实际上并未将属性引用传递到顶级
parse
API.(通常,所有属性处理神奇"地在编译时蒸发,这对于输入格式验证非常有用)
因此,您需要为基本命令类或派生类的对象创建一个持有者.使持有者满足 RuleOfZero 并得到实际按类型擦除值.
(除了解决意外"复杂性和限制 wrt 内存回收之外,这种抽象的一个好处是您仍然可以选择静态处理存储,因此您可以在堆分配中节省 [大量] 时间.)
我会看看你的样本,看看我是否可以快速演示.
这是我对持有者"类的意思(向 CommandBase
添加一个虚拟析构函数!):
struct CommandHolder{模板 CommandHolder(命令 cmd):存储(新的concrete_store<命令>{ std::move(cmd) }) { }运算符 CommandBase&() { return storage->get();}私人的:结构 base_store {虚拟 ~base_store() {};虚拟 CommandBase&获取()= 0;};模板 结构混凝土存储:base_store {混凝土商店(T v):包裹(标准::移动(v)){}虚拟 CommandBase&get() { 返回包装;}私人的:T包裹;};boost::shared_ptr贮存;};
正如你所看到的,我在这里选择了 .我无法让 unique_ptr
来实现简单的所有权语义(variant
将避免一些分配开销作为以后的优化)unique_ptr
与 Spirit 一起工作,因为 Spirit 根本没有移动感知能力.(Spirit X3 会).
我们可以基于这个持有者轻松实现一个类型擦除 AnyCommand
:
struct AnyCommand : CommandBase{模板 AnyCommand(命令 cmd):持有人(标准::移动(cmd)){}虚拟 void commandAction() 覆盖 {static_cast<CommandBase&>(holder).commandAction();}私人的:CommandHolder 持有人;};
所以现在您可以将任何命令分配"给 AnyCommand 并通过持有者多态地"使用它,即使持有者和 AnyCommand 具有完美的价值语义.
这个示例语法可以:
CommandParser() : CommandParser::base_type(commands){使用命名空间qi;CommandARule = int_>>内部_>>"CMD_A";CommandBRule = double_ >>lexeme[+(char_ - 空格)] >>"CMD_B";CommandCRule = ':' >>词位 [+graph - ';'] >>命令 >>';';命令 = CommandARule |命令规则 |命令规则;命令 = + 命令;}
规则定义为:
qi::rule命令规则;qi::rule命令规则;qi::rule命令规则;qi::rule命令;qi::rule命令;
这是值语义和运行时多态性的令人愉快的组合:)
测试主体
int main(){std::string 常量输入 =":组
"" 3.14 π CMD_B
"" -42 42 CMD_A
"" -inf -∞ CMD_B
"" +inf +∞ CMD_B
"";
""99 0 CMD_A";自动 f(begin(input)), l(end(input));std::vector命令列表;CommandParserp;bool 成功 = qi::phrase_parse(f, l, p, qi::space, commandList);如果(成功){BOOST_FOREACH(AnyCommand& c, commandList) {c.commandAction();}} 别的 {std::cout <<"解析失败
";}如果 (f!=l) {std::cout <<剩余未解析的输入"<<std::string(f,l) <<"'
";}}
打印:
子程序:组有4条命令:命令类型 B!值A:3.14 字符串:π命令类型 A!值A:-42 值B:42命令类型 B!值A:-inf 字符串:-∞命令类型 B!valueA:inf 字符串:+∞命令类型 A!值A:99 值B:0
查看所有内容在 Coliru 上直播>
I would like my boost::spirit-based parser to be able to parse a file, convert the parsed rules into different types, and emit a vector containing all of the matches it found. All of the types that are emitted as attributes should be inherited from a base type, for example:
#include <boost/spirit/include/qi.hpp>
#include <boost/fusion/adapt_struct.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/foreach.hpp>
struct CommandBase
{
virtual void commandAction()
{
std::cout << "This is a base command. You should never see this!" << std::endl;
//Boost::spirit seems to get mad if I make this purely virtual. Clearly I'm doing it wrong.
}
};
struct CommandTypeA : public CommandBase
{
int valueA;
int valueB;
virtual void commandAction()
{
std::cout << "CommandType A! ValueA: " << valueA << " ValueB: " << valueB << std::endl;
}
};
struct CommandTypeB : public CommandBase
{
double valueA;
std::vector<char> valueB;
virtual void commandAction()
{
std::cout << "CommandType B! valueA: " << valueA << " string: " << std::string(valueB.begin(), valueB.end()) << std::endl;
}
};
struct CommandTypeC : public CommandBase
{
//Represents a sort of "subroutine" type where multiple commands can be grouped together
std::vector<char> labelName;
std::vector<boost::shared_ptr<CommandBase> > commands;
virtual void commandAction()
{
std::cout << "Subroutine: " << std::string(labelName.start(), labelName.end())
<< " has " << commands.size() << " commands:" << std::endl;
BOOST_FOREACH(boost::shared_ptr<CommandBase> c, commands)
{
c->commandAction();
}
}
};
Now, my attempted parser code:
namespace ascii = boost::spirit::ascii;
namespace qi = boost::spirit::qi;
using qi::lit_;
BOOST_FUSION_ADAPT_STRUCT(
CommandTypeA,
(int, valueA)
(int, valueB)
)
BOOST_FUSION_ADAPT_STRUCT(
CommandTypeB,
(double, valueA)
(std::vector<char>, valueB)
)
BOOST_FUSION_ADAPT_STRUCT(
CommandTypeC,
(std::vector<char>, labelName)
(std::vector<boost::shared_ptr<CommandBase> >, commands)
)
template<typename Iterator, typename Skipper = ascii::space_type>
struct CommandParser : qi::grammar<Iterator, std::vector<boost::shared_ptr<CommandBase> >(), Skipper>
{
public:
CommandParser() : CommandParser()::base_type(commands)
{
CommandARule = qi::int_ >> qi::int_ >> lit("CMD_A");
CommandBRule = qi::int_ >> +(qi::char_) >> lit("CMD_B");
CommandCRule = qi::char_(':') >> lexeme[+(qi::char_ - ';' - ascii::space) >> +ascii::space] >> commands >> qi::char_(';');
commands = +(CommandARule | CommandBRule | CommandCRule);
}
protected:
qi::rule<Iterator, boost::shared_ptr<CommandTypeA>, Skipper> CommandARule;
qi::rule<Iterator, boost::shared_ptr<CommandTypeB>, Skipper> CommandBRule;
qi::rule<Iterator, boost::shared_ptr<CommandTypeC>, Skipper> CommandCRule;
qi::rule<Iterator, std::vector<boost::shared_ptr<CommandBase> >, Skipper> commands;
};
std::vector<boost::shared_ptr<CommandBase> > commandList;
bool success = qi::phrase_parse(StartIterator, EndIterator, CommandParser, ascii::space, commandList);
BOOST_FOREACH(boost::shared_ptr<CommandBase> c, commandList)
{
c->commandAction();
}
Now, this code definitely won't compile, but I hope it gets the gist across for what I'm attempting to do.
The main hangup is that qi::rules seem to want to emit the actual struct, not a reference to it.
My question is thus:
Is it possible to force qi::rule to emit a polymorphism-compatible reference like I'm attempting (if so, how), and is this the best approach for what I'm attempting to accomplish (namely a list of executable objects representing the parsed commands and their parameters)?
解决方案Spirit is a lot friendlier to compiletime-polymorphism
typedef variant<Command1, Command2, Command3> Command;
But, let's suppose you really want to do the old-fashioned polymorphism thing...
Just newing-up the polymorphic objects on the fly during parsing, however, is a sure-fire way to
- make your parser bloated with semantic actions
- create lot of memory leaks on back-tracking in the grammar rules
- make parsing awesomely slow (because you have all manner of dynamic allocation going on).
- Worst of all, none of this would be optimized away, even when you're not actually passing an attribute reference into the top-level
parse
API. (Usually, all attribute handling "magically" vaporizes at compile-time, which is very useful for input format validation)
So you'll want to create a holder for objects of your base-command class, or derived. Make the holder satisfy RuleOfZero and get the actual value out by type erasure.
(Beyond solving the "accidental" complexity and limits w.r.t. memory reclamation, a bonus to this abstraction is that you you can still opt to handle the storage statically, so you save [a lot] of time in heap allocations.)
I'll look at your sample to see whether I can demonstrate it quickly.
Here is what I mean with a 'holder' class (add a virtual destructor to CommandBase
!):
struct CommandHolder
{
template <typename Command> CommandHolder(Command cmd)
: storage(new concrete_store<Command>{ std::move(cmd) }) { }
operator CommandBase&() { return storage->get(); }
private:
struct base_store {
virtual ~base_store() {};
virtual CommandBase& get() = 0;
};
template <typename T> struct concrete_store : base_store {
concrete_store(T v) : wrapped(std::move(v)) { }
virtual CommandBase& get() { return wrapped; }
private:
T wrapped;
};
boost::shared_ptr<base_store> storage;
};
As you can see I opted for . I couldn't make unique_ptr
for simples ownership semantics here (a variant
would avoid some allocation overhead as an optimization later)unique_ptr
work with Spirit because Spirit is simply not move-aware. (Spirit X3 will be).
We can trivially implement a type-erased AnyCommand
based on this holder:
struct AnyCommand : CommandBase
{
template <typename Command> AnyCommand(Command cmd)
: holder(std::move(cmd)) { }
virtual void commandAction() override {
static_cast<CommandBase&>(holder).commandAction();
}
private:
CommandHolder holder;
};
So now you can "assign" any command to an AnyCommand and use it "polymorphically" through the holder, even though the holder and AnyCommand have perfect value-semantics.
This sample grammar will do:
CommandParser() : CommandParser::base_type(commands)
{
using namespace qi;
CommandARule = int_ >> int_ >> "CMD_A";
CommandBRule = double_ >> lexeme[+(char_ - space)] >> "CMD_B";
CommandCRule = ':' >> lexeme [+graph - ';'] >> commands >> ';';
command = CommandARule | CommandBRule | CommandCRule;
commands = +command;
}
With the rules defined as:
qi::rule<Iterator, CommandTypeA(), Skipper> CommandARule;
qi::rule<Iterator, CommandTypeB(), Skipper> CommandBRule;
qi::rule<Iterator, CommandTypeC(), Skipper> CommandCRule;
qi::rule<Iterator, AnyCommand(), Skipper> command;
qi::rule<Iterator, std::vector<AnyCommand>(), Skipper> commands;
This is quite a delightful mix of value-semantics and runtime-polymorphism :)
The test main of
int main()
{
std::string const input =
":group
"
" 3.14 π CMD_B
"
" -42 42 CMD_A
"
" -inf -∞ CMD_B
"
" +inf +∞ CMD_B
"
";
"
"99 0 CMD_A";
auto f(begin(input)), l(end(input));
std::vector<AnyCommand> commandList;
CommandParser<std::string::const_iterator> p;
bool success = qi::phrase_parse(f, l, p, qi::space, commandList);
if (success) {
BOOST_FOREACH(AnyCommand& c, commandList) {
c.commandAction();
}
} else {
std::cout << "Parsing failed
";
}
if (f!=l) {
std::cout << "Remaining unparsed input '" << std::string(f,l) << "'
";
}
}
Prints:
Subroutine: group has 4 commands:
CommandType B! valueA: 3.14 string: π
CommandType A! ValueA: -42 ValueB: 42
CommandType B! valueA: -inf string: -∞
CommandType B! valueA: inf string: +∞
CommandType A! ValueA: 99 ValueB: 0
See it all Live On Coliru
相关文章