加载 svmlight 格式错误
问题描述
当我尝试将 svmlight python 包 与我已转换为 svmlight 格式的数据一起使用时我得到一个错误.它应该是非常基本的,我不明白发生了什么.代码如下:
When I try to use the svmlight python package with data I already converted to svmlight format I get an error. It should be pretty basic, I don't understand what's happening. Here's the code:
import svmlight
training_data = open('thedata', "w")
model=svmlight.learn(training_data, type='classification', verbosity=0)
我也试过了:
training_data = numpy.load('thedata')
和
training_data = __import__('thedata')
解决方案
一个明显的问题是您在打开数据文件时会截断它,因为您指定了写入模式 "w"
.这意味着将没有要读取的数据.
One obvious problem is that you are truncating your data file when you open it because you are specifying write mode "w"
. This means that there will be no data to read.
无论如何,如果您的数据文件类似于此 example,因为是python文件,所以需要导入.这应该有效:
Anyway, you don't need to read the file like that if your data file is like the one in this example, you need to import it because it is a python file. This should work:
import svmlight
from data import train0 as training_data # assuming your data file is named data.py
# or you could use __import__()
#training_data = __import__('data').train0
model = svmlight.learn(training_data, type='classification', verbosity=0)
您可能希望将您的数据与示例的数据进行比较.
You might want to compare your data against that of the example.
数据文件格式明确后编辑
输入文件需要被解析成这样的元组列表:
The input file needs to be parsed into a list of tuples like this:
[(target, [(feature_1, value_1), (feature_2, value_2), ... (feature_n, value_n)]),
(target, [(feature_1, value_1), (feature_2, value_2), ... (feature_n, value_n)]),
...
]
svmlight 包似乎不支持读取 SVM 文件格式的文件,并且没有任何解析功能,因此必须在 Python 中实现.SVM 文件如下所示:
The svmlight package does not appear to support reading from a file in the SVM file format, and there aren't any parsing functions, so it will have to be implemented in Python. SVM files look like this:
<target> <feature>:<value> <feature>:<value> ... <feature>:<value> # <info>
所以这里有一个解析器,可以将文件格式转换为 svmlight 包所需的格式:
so here is a parser that converts from the file format to that required by the svmlight package:
def svm_parse(filename):
def _convert(t):
"""Convert feature and value to appropriate types"""
return (int(t[0]), float(t[1]))
with open(filename) as f:
for line in f:
line = line.strip()
if not line.startswith('#'):
line = line.split('#')[0].strip() # remove any trailing comment
data = line.split()
target = float(data[0])
features = [_convert(feature.split(':')) for feature in data[1:]]
yield (target, features)
你可以这样使用它:
import svmlight
training_data = list(svm_parse('thedata'))
model=svmlight.learn(training_data, type='classification', verbosity=0)
相关文章