使用 OpenCV 和机器学习进行简单的对象检测
我必须使用 OpenCV 编写一个对象检测器(在本例中为一个球).问题是,谷歌上的每一次搜索都会给我返回一些带有人脸检测的东西.所以我需要关于从哪里开始、使用什么等方面的帮助.
I have to code an object detector (in this case, a ball) using OpenCV. The problem is, every single search on google returns me something with FACE DETECTION in it. So i need help on where to start, what to use etc..
一些信息:
- 球没有固定的颜色,它可能是白色的,但可能会改变.
- 我必须使用机器学习,不一定是复杂可靠的机器学习,建议是 KNN(它更简单、更容易).
- 经过我的所有搜索,我发现计算样本球图像的直方图并将其教授给机器学习可能很有用,但我在这里主要担心的是球的大小可能并且将会改变(离球越来越近,越来越远)相机),我不知道要传递给 ML 什么来为我分类,我的意思是..我不能(或者我可以?)只测试每个可能尺寸的图像的每个像素(从,可以说,5x5 到 WxH)并希望找到一个积极的结果.
- 可能存在不统一的背景,例如人、球后面的布料等.
- 正如我所说,我必须使用机器学习算法,这意味着没有 Haar 或 Viola 算法.
所以...建议?
提前致谢.;)
推荐答案
嗯,基本上你需要检测圈子.你见过 cvHoughCircles()
吗?可以使用吗?
Well, basically you need to detect circles. Have you seen cvHoughCircles()
? Are you allowed to use it?
这个页面有关于如何检测东西的很好的信息使用 OpenCV.您可能对第 2.5 节一>.
This page has good info on how detecting stuff with OpenCV. You might be more interested on section 2.5.
这是我刚写的一个小演示,用于检测这张图片中的硬币.希望您可以利用代码的某些部分来发挥自己的优势.
This is a small demo I just wrote to detect coins in this picture. Hopefully you can use some part of the code to your advantage.
输入:
输出:
// compiled with: g++ circles.cpp -o circles `pkg-config --cflags --libs opencv`
#include <stdio.h>
#include <cv.h>
#include <highgui.h>
#include <math.h>
int main(int argc, char** argv)
{
IplImage* img = NULL;
if ((img = cvLoadImage(argv[1]))== 0)
{
printf("cvLoadImage failed
");
}
IplImage* gray = cvCreateImage(cvGetSize(img), IPL_DEPTH_8U, 1);
CvMemStorage* storage = cvCreateMemStorage(0);
cvCvtColor(img, gray, CV_BGR2GRAY);
// This is done so as to prevent a lot of false circles from being detected
cvSmooth(gray, gray, CV_GAUSSIAN, 7, 7);
IplImage* canny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,1);
IplImage* rgbcanny = cvCreateImage(cvGetSize(img),IPL_DEPTH_8U,3);
cvCanny(gray, canny, 50, 100, 3);
CvSeq* circles = cvHoughCircles(gray, storage, CV_HOUGH_GRADIENT, 1, gray->height/3, 250, 100);
cvCvtColor(canny, rgbcanny, CV_GRAY2BGR);
for (size_t i = 0; i < circles->total; i++)
{
// round the floats to an int
float* p = (float*)cvGetSeqElem(circles, i);
cv::Point center(cvRound(p[0]), cvRound(p[1]));
int radius = cvRound(p[2]);
// draw the circle center
cvCircle(rgbcanny, center, 3, CV_RGB(0,255,0), -1, 8, 0 );
// draw the circle outline
cvCircle(rgbcanny, center, radius+1, CV_RGB(0,0,255), 2, 8, 0 );
printf("x: %d y: %d r: %d
",center.x,center.y, radius);
}
cvNamedWindow("circles", 1);
cvShowImage("circles", rgbcanny);
cvSaveImage("out.png", rgbcanny);
cvWaitKey(0);
return 0;
}
圆的检测很大程度上取决于cvHoughCircles()
的参数.请注意,在这个演示中,我也使用了 Canny.
The detection of the circles depend a lot on the parameters of cvHoughCircles()
. Note that in this demo I used Canny as well.
相关文章