在 C++ 中创建 n 个项目的所有可能的 k 组合
从1
到n
有n个人.我必须编写一个代码来生成和打印来自这些 n
的 k
人的所有不同组合.请解释用于此的算法.
There are n people numbered from 1
to n
. I have to write a code which produces and print all different combinations of k
people from these n
. Please explain the algorithm used for that.
推荐答案
我假设您在询问组合意义上的组合(即元素的顺序并不重要,所以 [1 2 3]
与 [2 1 3]
相同).这个想法很简单,如果你理解归纳/递归:要获得所有 K
元素组合,你首先从现有的一组人中选择组合的初始元素,然后你连接"这个初始元素与 K-1
人的所有可能组合是从初始元素之后的元素产生的.
I assume you're asking about combinations in combinatorial sense (that is, order of elements doesn't matter, so [1 2 3]
is the same as [2 1 3]
). The idea is pretty simple then, if you understand induction / recursion: to get all K
-element combinations, you first pick initial element of a combination out of existing set of people, and then you "concatenate" this initial element with all possible combinations of K-1
people produced from elements that succeed the initial element.
举个例子,假设我们想从一组 5 人中取出 3 人的所有组合.那么3人的所有可能组合都可以用2人的所有可能组合来表示:
As an example, let's say we want to take all combinations of 3 people from a set of 5 people. Then all possible combinations of 3 people can be expressed in terms of all possible combinations of 2 people:
comb({ 1 2 3 4 5 }, 3) =
{ 1, comb({ 2 3 4 5 }, 2) } and
{ 2, comb({ 3 4 5 }, 2) } and
{ 3, comb({ 4 5 }, 2) }
这是实现这个想法的 C++ 代码:
Here's C++ code that implements this idea:
#include <iostream>
#include <vector>
using namespace std;
vector<int> people;
vector<int> combination;
void pretty_print(const vector<int>& v) {
static int count = 0;
cout << "combination no " << (++count) << ": [ ";
for (int i = 0; i < v.size(); ++i) { cout << v[i] << " "; }
cout << "] " << endl;
}
void go(int offset, int k) {
if (k == 0) {
pretty_print(combination);
return;
}
for (int i = offset; i <= people.size() - k; ++i) {
combination.push_back(people[i]);
go(i+1, k-1);
combination.pop_back();
}
}
int main() {
int n = 5, k = 3;
for (int i = 0; i < n; ++i) { people.push_back(i+1); }
go(0, k);
return 0;
}
这里是 N = 5, K = 3
的输出:
combination no 1: [ 1 2 3 ]
combination no 2: [ 1 2 4 ]
combination no 3: [ 1 2 5 ]
combination no 4: [ 1 3 4 ]
combination no 5: [ 1 3 5 ]
combination no 6: [ 1 4 5 ]
combination no 7: [ 2 3 4 ]
combination no 8: [ 2 3 5 ]
combination no 9: [ 2 4 5 ]
combination no 10: [ 3 4 5 ]
相关文章