C/C++ 中整数除法的快速上限
给定整数值 x
和 y
,C 和 C++ 都返回浮点的底数作为商 q = x/y
相等的.我对返回天花板的方法感兴趣.例如,ceil(10/5)=2
和 ceil(11/5)=3
.
Given integer values x
and y
, C and C++ both return as the quotient q = x/y
the floor of the floating point equivalent. I'm interested in a method of returning the ceiling instead. For example, ceil(10/5)=2
and ceil(11/5)=3
.
显而易见的方法包括:
q = x / y;
if (q * y < x) ++q;
这需要额外的比较和乘法;我见过的其他方法(实际上使用过)涉及转换为 float
或 double
.有没有更直接的方法可以避免额外的乘法(或二次除法)和分支,也可以避免转换为浮点数?
This requires an extra comparison and multiplication; and other methods I've seen (used in fact) involve casting as a float
or double
. Is there a more direct method that avoids the additional multiplication (or a second division) and branch, and that also avoids casting as a floating point number?
推荐答案
对于正数
unsigned int x, y, q;
四舍五入...
q = (x + y - 1) / y;
或(避免 x+y 溢出)
or (avoiding overflow in x+y)
q = 1 + ((x - 1) / y); // if x != 0
相关文章