减少 OpenMP 中的数组
我正在尝试并行化以下程序,但不知道如何减少数组.我知道这是不可能的,但有没有其他选择?谢谢.(我在 m 上添加了reduce,这是错误的,但想就如何做到这一点提出建议.)
I am trying to parallelize the following program, but don't know how to reduce on an array. I know it is not possible to do so, but is there an alternative? Thanks. (I added reduction on m which is wrong but would like to have an advice on how to do it.)
#include <iostream>
#include <stdio.h>
#include <time.h>
#include <omp.h>
using namespace std;
int main ()
{
int A [] = {84, 30, 95, 94, 36, 73, 52, 23, 2, 13};
int S [10];
time_t start_time = time(NULL);
#pragma omp parallel for private(m) reduction(+:m)
for (int n=0 ; n<10 ; ++n ){
for (int m=0; m<=n; ++m){
S[n] += A[m];
}
}
time_t end_time = time(NULL);
cout << end_time-start_time;
return 0;
}
推荐答案
是的,可以使用 OpenMP 进行数组缩减.在 Fortran 中,它甚至为此有构造.在 C/C++ 中,你必须自己做.这里有两种方法可以做到.
Yes it is possible to do an array reduction with OpenMP. In Fortran it even has construct for this. In C/C++ you have to do it yourself. Here are two ways to do it.
第一种方法为每个线程制作私有版本的S
,并行填充,然后在临界区合并成S
(见下面的代码).第二种方法创建一个维度为 10*nthreads 的数组.并行填充此数组,然后将其合并到 S
中,而不使用临界区.第二种方法要复杂得多,如果您不小心,可能会出现缓存问题,尤其是在多路系统上.有关更多详细信息,请参阅此填充直方图(数组缩减)与 OpenMP 并行,无需使用临界区
The first method makes private version of S
for each thread, fill them in parallel, and then merges them into S
in a critical section (see the code below). The second method makes an array with dimentions 10*nthreads. Fills this array in parallel and then merges it into S
without using a critical section. The second method is much more complicated and can have cache issues especially on multi-socket systems if you are not careful. For more details see this Fill histograms (array reduction) in parallel with OpenMP without using a critical section
第一种方法
int A [] = {84, 30, 95, 94, 36, 73, 52, 23, 2, 13};
int S [10] = {0};
#pragma omp parallel
{
int S_private[10] = {0};
#pragma omp for
for (int n=0 ; n<10 ; ++n ) {
for (int m=0; m<=n; ++m){
S_private[n] += A[m];
}
}
#pragma omp critical
{
for(int n=0; n<10; ++n) {
S[n] += S_private[n];
}
}
}
第二种方法
int A [] = {84, 30, 95, 94, 36, 73, 52, 23, 2, 13};
int S [10] = {0};
int *S_private;
#pragma omp parallel
{
const int nthreads = omp_get_num_threads();
const int ithread = omp_get_thread_num();
#pragma omp single
{
S_private = new int[10*nthreads];
for(int i=0; i<(10*nthreads); i++) S_private[i] = 0;
}
#pragma omp for
for (int n=0 ; n<10 ; ++n )
{
for (int m=0; m<=n; ++m){
S_private[ithread*10+n] += A[m];
}
}
#pragma omp for
for(int i=0; i<10; i++) {
for(int t=0; t<nthreads; t++) {
S[i] += S_private[10*t + i];
}
}
}
delete[] S_private;
相关文章