如何正确计算 Kubernetes 容器 CPU 使用率

2022-05-09 00:00:00 的是 容器 使用率 微秒 在一


本文转自博客园,原文:https://www.cnblogs.com/apink/p/15767687.html,版权归原作者所有。

参数解释

使用 Prometheus 配置 kubernetes 环境中 Container 的 CPU 使用率时,会经常遇到 CPU 使用超出 ,下面就来解释一下:

  1. container_spec_cpu_period

    当对容器进行 CPU 限制时,CFS 调度的时间窗口,又称容器 CPU 的时钟周期通常是 100,000 微秒

  2. container_spec_cpu_quota

    是指容器的使用 CPU 时间周期总量,如果 quota 设置的是 700,000,就代表该容器可用的 CPU 时间是 7*100,000 微秒,通常对应 kubernetes 的 resource.cpu.limits 的值

  3. container_spec_cpu_share

    是指 container 使用分配主机 CPU 相对值,比如 share 设置的是 500m,代表窗口启动时向主机节点申请 0.5 个 CPU,也就是 50,000 微秒,通常对应 kubernetes 的 resource.cpu.requests 的值

  4. container_cpu_usage_seconds_total

    统计容器的 CPU 在一秒内消耗使用率,应注意的是该 container 所有的 CORE

  5. container_cpu_system_seconds_total

    统计容器内核态在一秒时间内消耗的 CPU

  6. container_cpu_user_seconds_total

    统计容器用户态在一秒时间内消耗的 CPU

    参考官方地址 https://docs.signalfx.com/en/latest/integrations/agent/monitors/cadvisor.html https://github.com/google/cadvisor/blob/master/docs/storage/prometheus.md

具体公式

  1. 默认如果直接使用 container_cpu_usage_seconds_total 的话,如下

    sum(irate(container_cpu_usage_seconds_total{container="$Container",instance="$Node",pod="$Pod"}[5m])*100)by(pod)

    默认统计的数据是该容器所有的 CORE 的平均使用率

  2. 如果要计算每个容器的 CPU 使用率,使用 % 呈现的形式,如下

    sum(irate(container_cpu_usage_seconds_total{container="$Container",instance="$Node",pod="$Pod"}[5m])*100)by(pod)/sum(container_spec_cpu_quota{container="$Container",instance="$Node",pod="$Pod"}/container_spec_cpu_period{container="$Container",instance="$Node",pod="$Pod"})by(pod)

    其中 container_spec_cpu_quota/container_spec_cpu_period,就代表该容器有多少个 CORE

  3. 参考官方 git issue

    https://github.com/google/cadvisor/issues/2026#issuecomment-415819667

docker stats

docker stats 输出的指标列是如何计算的,如下:

首先 docker stats 是通过 Docker API /containers/(id)/stats 接口来获得 live data stream,再通过 docker stats 进行整合。

在 Linux 中使用 docker stats 输出的内存使用率(MEM USAGE),实则该列的计算是不包含 Cache 的内存。

cache usage 在 ≤ docker 19.03 版本的 API 接口输出对应的字段是 memory_stats.total_inactive_file,而 > docker 19.03 的版本对应的字段是 memory_stats.cache。

docker stats 输出的 PIDS 一列代表的是该容器创建的进程或线程的数量,threads 是 Linux kernel 中的一个术语,又称 lightweight process & kernel task

  1. 如何通过 Docker API 查看容器资源使用率,如下

    $ curl -s --unix-socket /var/run/docker.sock "http://localhost/v1.40/containers/10f2db238edc/stats" | jq -r
    {
      "read""2022-01-05T06:14:47.705943252Z",
      "preread""0001-01-01T00:00:00Z",
      "pids_stats": {
        "current"240
      },
      "blkio_stats": {
        "io_service_bytes_recursive": [
          {
            "major"253,
            "minor",
            "op""Read",
            "value"
          },
          {
            "major"253,
            "minor",
            "op""Write",
            "value"917504
          },
          {
            "major"253,
            "minor",
            "op""Sync",
            "value"
          },
          {
            "major"253,
            "minor",
            "op""Async",
            "value"917504
          },
          {
            "major"253,
            "minor",
            "op""Discard",
            "value"
          },
          {
            "major"253,
            "minor",
            "op""Total",
            "value"917504
          }
        ],
        "io_serviced_recursive": [
          {
            "major"253,
            "minor",
            "op""Read",
            "value"
          },
          {
            "major"253,
            "minor",
            "op""Write",
            "value"32
          },
          {
            "major"253,
            "minor",
            "op""Sync",
            "value"
          },
          {
            "major"253,
            "minor",
            "op""Async",
            "value"32
          },
          {
            "major"253,
            "minor",
            "op""Discard",
            "value"
          },
          {
            "major"253,
            "minor",
            "op""Total",
            "value"32
          }
        ],
        "io_queue_recursive": [],
        "io_service_time_recursive": [],
        "io_wait_time_recursive": [],
        "io_merged_recursive": [],
        "io_time_recursive": [],
        "sectors_recursive": []
      },
      "num_procs",
      "storage_stats": {},
      "cpu_stats": {
        "cpu_usage": {
          "total_usage"251563853433744,
          "percpu_usage": [
            22988555937059,
            6049382848016,
            22411490707722,
            5362525449957,
            25004835766513,
            6165050456944,
            27740046633494,
            6245013152748,
            29404953317631,
            5960151933082,
            29169053441816,
            5894880727311,
            25772990860310,
            5398581194412,
            22856145246881,
            5140195759848
          ],
          "usage_in_kernelmode"30692640000000,
          "usage_in_usermode"213996900000000
        },
        "system_cpu_usage"22058735930000000,
        "online_cpus"16,
        "throttling_data": {
          "periods"10673334,
          "throttled_periods"1437,
          "throttled_time"109134709435
        }
      },
      "precpu_stats": {
        "cpu_usage": {
          "total_usage",
          "usage_in_kernelmode",
          "usage_in_usermode"
        },
        "throttling_data": {
          "periods",
          "throttled_periods",
          "throttled_time"
        }
      },
      "memory_stats": {
        "usage"8589447168,
        "max_usage"8589926400,
        "stats": {
          "active_anon",
          "active_file"260198400,
          "cache"1561460736,
          "dirty"3514368,
          "hierarchical_memory_limit"8589934592,
          "hierarchical_memsw_limit"8589934592,
          "inactive_anon"6947250176,
          "inactive_file"1300377600,
          "mapped_file",
          "pgfault"3519153,
          "pgmajfault",
          "pgpgin"184508478,
          "pgpgout"184052901,
          "rss"6947373056,
          "rss_huge"6090129408,
          "total_active_anon",
          "total_active_file"260198400,
          "total_cache"1561460736,
          "total_dirty"3514368,
          "total_inactive_anon"6947250176,
          "total_inactive_file"1300377600,
          "total_mapped_file",
          "total_pgfault"3519153,
          "total_pgmajfault",
          "total_pgpgin"184508478,
          "total_pgpgout"184052901,
          "total_rss"6947373056,
          "total_rss_huge"6090129408,
          "total_unevictable",
          "total_writeback",
          "unevictable",
          "writeback"
        },
        "limit"8589934592
      },
      "name""/k8s_prod-xc-fund_prod-xc-fund-646dfc657b-g4px4_prod_523dcf9d-6137-4abf-b4ad-bd3999abcf25_0",
      "id""10f2db238edc13f538716952764d6c9751e5519224bcce83b72ea7c876cc0475"
  2. 如何计算

    官方地址

    https://docs.docker.com/engine/api/v1.40/#operation/ContainerStats

    The precpu_stats is the CPU statistic of the previous read, and is used to calculate the CPU usage percentage. It is not an exact copy of the cpu_stats field.

    If either precpu_stats.online_cpus or cpu_stats.online_cpus is nil then for compatibility with older daemons the length of the corresponding cpu_usage.percpu_usage array should be used.

    To calculate the values shown by the stats command of the docker cli tool the following formulas can be used:

  • used_memory = memory_stats.usage - memory_stats.stats.cache
  • available_memory = memory_stats.limit
  • Memory usage % = (used_memory / available_memory) * 100.0
  • cpu_delta = cpu_stats.cpu_usage.total_usage - precpu_stats.cpu_usage.total_usage
  • system_cpu_delta = cpu_stats.system_cpu_usage - precpu_stats.system_cpu_usage
  • number_cpus = lenght(cpu_stats.cpu_usage.percpu_usage) or cpu_stats.online_cpus
  • CPU usage % = (cpu_delta / system_cpu_delta) * number_cpus * 100.0





相关文章