你见过的全面的Python重点知识总结

2022-04-24 00:00:00 索引 数据 函数 执行 报文



这是一份来自于 SegmentFault 上的开发者 @二十一 总结的 Python 重点。由于总结了太多的东西,所以篇幅有点长,这也是作者"缝缝补补"总结了好久的东西,强烈建议收藏再慢慢看~

Py2 VS Py3

Py2 和 Py3 的差别

  • print 成为了函数,python2 是关键字
  • 不再有 unicode 对象,默认 str 就是 unicode
  • python3 除号返回浮点数
  • 没有了long类型
  • xrange 不存在,range 替代了 xrange
  • 可以使用中文定义函数名变量名
  • 解包和*解包
  • 限定关键字参数 *后的变量必须加入名字=值
  • raise from
  • iteritems 移除变成 items()
  • yield from 链接子生成器
  • asyncio,async/await 原生协程支持异步编程
  • 新增 enum, mock, ipaddress, concurrent.futures, asyncio urllib, selector
    • 不同枚举类间不能进行比较
    • 同一枚举类间只能进行相等的比较
    • 枚举类的使用(编号默认从1开始)
    • 为了避免枚举类中相同枚举值的出现,可以使用@unique装饰枚举类
#枚举的注意事项
from enum import Enum

class COLOR(Enum):
    YELLOW=1
#YELLOW=2#会报错
    GREEN=1#不会报错,GREEN可以看作是YELLOW的别名
    BLACK=3
    RED=4
print(COLOR.GREEN)#COLOR.YELLOW,还是会打印出YELLOW
for i in COLOR:#遍历一下COLOR并不会有GREEN
    print(i)
#COLOR.YELLOW\nCOLOR.BLACK\nCOLOR.RED\n怎么把别名遍历出来
for i in COLOR.__members__.items():
    print(i)
output:('YELLOW', <COLOR.YELLOW: 1>)\n('GREEN', <COLOR.YELLOW: 1>)\n('BLACK', <COLOR.BLACK: 3>)\n('RED', <COLOR.RED: 4>)
for i in COLOR.__members__:
    print(i)
output:YELLOW\nGREEN\nBLACK\nRED

#枚举转换
#好在数据库存取使用枚举的数值而不是使用标签名字字符串
#在代码里面使用枚举类
a=1
print(COLOR(a))output:COLOR.YELLOW

py2/3 转换工具

  • six 模块:兼容 pyton2 和 pyton3 的模块

  • 2to3 工具:改变代码语法版本

  • __future__:使用下一版本的功能

库相关

常用库

  • 必须知道的 collections https://segmentfault.com/a/1190000017385799
  • python排 序操作及 heapq 模块 https://segmentfault.com/a/1190000017383322
  • itertools 模块超实用方法 https://segmentfault.com/a/1190000017416590

不常用但很重要的库

  • dis(代码字节码分析)
  • inspect(生成器状态)
  • cProfile(性能分析)
  • bisect(维护有序列表)
  • fnmatch
  • fnmatch(string,"*.txt") # win下不区分大小写
  • fnmatch 根据系统决定
  • fnmatchcase 完全区分大小写
  • timeit(代码执行时间)
def isLen(strString):
    #还是应该使用三元表达式,更快
    return True if len(strString)>6 else False

def isLen1(strString):
    #这里注意falsetrue的位置
    return [False,True][len(strString)>6]
import timeit
print(timeit.timeit('isLen1("5fsdfsdfsaf")',setup="from __main__ import isLen1"))

print(timeit.timeit('isLen("5fsdfsdfsaf")',setup="from __main__ import isLen"))
  • contextlib
    • @contextlib.contextmanager 使生成器函数变成一个上下文管理器
  • *(包含了标准解释器定义的所有类型的类型对象,可以将生成器函数修饰为异步模式)
import *
*.coroutine #相当于实现了__await__
  • html(实现对html的转义)
import html
html.escape("<h1>I'm Jim</h1>"# output:'&lt;h1&gt;I&#x27;m Jim&lt;/h1&gt;'
html.unescape('&lt;h1&gt;I&#x27;m Jim&lt;/h1&gt;'<h1>I'm Jim</h1>
  • mock(解决测试依赖)
  • concurrent(创建进程池和线程池)
from concurrent.futures import ThreadPoolExecutor

pool = ThreadPoolExecutor()
task = pool.submit(函数名,(参数)) #此方法不会阻塞,会立即返回
task.done()#查看任务执行是否完成
task.result()#阻塞的方法,查看任务返回值
task.cancel()#取消未执行的任务,返回True或False,取消成功返回True
task.add_done_callback()#回调函数
task.running()#是否正在执行     task就是一个Future对象

for data in pool.map(函数,参数列表):#返回已经完成的任务结果列表,根据参数顺序执行
    print(返回任务完成得执行结果data)

from concurrent.futures import as_completed
as_completed(任务列表)#返回已经完成的任务列表,完成一个执行一个

wait(任务列表,return_when=条件)#根据条件进行阻塞主线程,有四个条件
  • selector(封装select,用户多路复用io编程)
  • asyncio
future=asyncio.ensure_future(协程)  等于后面的方式  future=loop.create_task(协程)
future.add_done_callback()添加一个完成后的回调函数
loop.run_until_complete(future)
future.result()查看写成返回结果

asyncio.wait()接受一个可迭代的协程对象
asynicio.gather(*可迭代对象,*可迭代对象)    两者结果相同,但gather可以批量取消,gather对象.cancel()

一个线程中只有一个loop

loop.stop时一定要loop.run_forever()否则会报错
loop.run_forever()可以执行非协程
后执行finally模块中 loop.close()

asyncio.Task.all_tasks()拿到所有任务 然后依次迭代并使用任务.cancel()取消

偏函数partial(函数,参数)把函数包装成另一个函数名  其参数必须放在定义函数的前面

loop.call_soon(函数,参数)
call_soon_threadsafe()线程安全    
loop.call_later(时间,函数,参数)
在同一代码块中call_soon优先执行,然后多个later根据时间的升序进行执行

如果非要运行有阻塞的代码
使用loop.run_in_executor(executor,函数,参数)包装成一个多线程,然后放入到一个task列表中,通过wait(task列表)来运行

通过asyncio实现http
reader,writer=await asyncio.open_connection(host,port)
writer.writer()发送请求
async for data in reader:
    data=data.decode("utf-8")
    list.append(data)
然后list中存储的就是html

as_completed(tasks)完成一个返回一个,返回的是一个可迭代对象    

协程锁
async with Lock():

Python 进阶


  • 进程间通信:
    • Manager(内置了好多数据结构,可以实现多进程间内存共享)
from multiprocessing import Manager,Process
def add_data(p_dict, key, value):
    p_dict[key] = value

if __name__ == "__main__":
    progress_dict = Manager().dict()
    from queue import PriorityQueue

    first_progress = Process(target=add_data, args=(progress_dict, "bobby1"22))
    second_progress = Process(target=add_data, args=(progress_dict, "bobby2"23))

    first_progress.start()
    second_progress.start()
    first_progress.join()
    second_progress.join()

    print(progress_dict)
  • Pipe(适用于两个进程)
from multiprocessing import Pipe,Process
#pipe的性能高于queue
def producer(pipe):
    pipe.send("bobby")

def consumer(pipe):
    print(pipe.recv())

if __name__ == "__main__":
    recevie_pipe, send_pipe = Pipe()
    #pipe只能适用于两个进程
    my_producer= Process(target=producer, args=(send_pipe, ))
    my_consumer = Process(target=consumer, args=(recevie_pipe,))

    my_producer.start()
    my_consumer.start()
    my_producer.join()
    my_consumer.join()
  • Queue(不能用于进程池,进程池间通信需要使用Manager().Queue())
from multiprocessing import Queue,Process
def producer(queue):
    queue.put("a")
    time.sleep(2)

def consumer(queue):
    time.sleep(2)
    data = queue.get()
    print(data)

if __name__ == "__main__":
    queue = Queue(10)
    my_producer = Process(target=producer, args=(queue,))
    my_consumer = Process(target=consumer, args=(queue,))
    my_producer.start()
    my_consumer.start()
    my_producer.join()
    my_consumer.join()
  • 进程池
def producer(queue):
    queue.put("a")
    time.sleep(2)

def consumer(queue):
    time.sleep(2)
    data = queue.get()
    print(data)

if __name__ == "__main__":
    queue = Manager().Queue(10)
    pool = Pool(2)

    pool.apply_async(producer, args=(queue,))
    pool.apply_async(consumer, args=(queue,))

    pool.close()
    pool.join()
  • sys 模块几个常用方法

    • argv 命令行参数list,个是程序本身的路径
    • path 返回模块的搜索路径
    • modules.keys() 返回已经导入的所有模块的列表
    • exit(0) 退出程序
  • a in s or b in s or c in s简写

    • 采用any方式:all() 对于任何可迭代对象为空都会返回 True
# 方法一
True in [i in s for i in [a,b,c]]
# 方法二
any(i in s for i in [a,b,c])
# 方法三
list(filter(lambda x:x in s,[a,b,c]))
  • set集合运用

    • {1,2}.issubset({1,2,3})#判断是否是其子集
    • {1,2,3}.issuperset({1,2})
    • {}.isdisjoint({})#判断两个set交集是否为空,是空集则为True
  • 代码中中文匹配

    • [u4E00-u9FA5]匹配中文文字区间[一到龥]
  • 查看系统默认编码格式

import sys
sys.getdefaultencoding()    setdefaultencodeing()设置系统编码方式
  • getattr VS getattribute
class A(dict):
    def __getattr__(self,value):#当访问属性不存在的时候返回
        return 2
    def __getattribute__(self,item):#屏蔽所有的元素访问
        return item
  • 类变量是不会存入实例__dict__中的,只会存在于类的__dict__中

  • globals/locals(可以变相操作代码)

    • globals中保存了当前模块中所有的变量属性与值
    • locals中保存了当前环境中的所有变量属性与值
  • python变量名的解析机制(LEGB)

    • 本地作用域(Local)
    • 当前作用域被嵌入的本地作用域(Enclosing locals)
    • 全局/模块作用域(Global)
    • 内置作用域(Built-in)
  • 实现从1-100每三个为一组分组

print([[x for x in range(1,101)][i:i+3for i in range(,100,3)])
  • 什么是元类?
    • 即创建类的类,创建类的时候只需要将metaclass=元类,元类需要继承type而不是object,因为type就是元类
type.__bases__  #(<class 'object'>,)
object.__bases__    #()
type(object)    #<class 'type'>
class Yuan(type):
        def __new__(cls,name,base,attr,*args,**kwargs):
            return type(name,base,attr,*args,**kwargs)
    class MyClass(metaclass=Yuan):
        pass
  • 什么是鸭子类型(即:多态)?

    • Python在使用传入参数的过程中不会默认判断参数类型,只要参数具备执行条件就可以执行
  • 深拷贝和浅拷贝

    • 深拷贝拷贝内容,浅拷贝拷贝地址(增加引用计数)
    • copy模块实现神拷贝
  • 单元测试

    • 一般测试类继承模块unittest下的TestCase
    • pytest模块快捷测试(方法以test_开头/测试文件以test_开头/测试类以Test开头,并且不能带有 init 方法)
    • coverage统计测试覆盖率
class MyTest(unittest.TestCase):
    def tearDown(self):# 每个测试用例执行前执行
        print('本方法开始测试了')

    def setUp(self):# 每个测试用例执行之前做操作
        print('本方法测试结束')

    @classmethod
    def tearDownClass(self):# 必须使用 @ classmethod装饰器, 所有test运行完后运行一次
        print('开始测试')
    @classmethod
    def setUpClass(self):# 必须使用@classmethod 装饰器,所有test运行前运行一次
        print('结束测试')

    def test_a_run(self):
        self.assertEqual(11)  # 测试用例
  • gil 会根据执行的字节码行数以及时间片释放 gil,gil 在遇到 io 的操作时候主动释放

  • 什么是 monkey patch?

    • 猴子补丁,在运行的时候替换掉会阻塞的语法修改为非阻塞的方法
  • 什么是自省(Introspection)?

    • 运行时判断一个对象的类型的能力,id,type,isinstance
  • python 是值传递还是引用传递?

    • 都不是,python是共享传参,默认参数在执行时只会执行一次
  • try-except-else-finally中 else 和 finally 的区别

    • else在不发生异常的时候执行,finally无论是否发生异常都会执行
    • except一次可以捕获多个异常,但一般为了对不同异常进行不同处理,我们分次捕获处理
  • GIL 全局解释器锁

    • 同一时间只能有一个线程执行,CPython(IPython)的特点,其他解释器不存在
    • cpu 密集型:多进程+进程池
    • io 密集型:多线程/协程
  • 什么是 Cython

    • 将 python 解释 成 C 代码工具
  • 生成器和迭代器

    • 实现__next__和__iter__方法的对象就是迭代器
    • 可迭代对象只需要实现__iter__方法
    • 使用生成器表达式或者yield的生成器函数(生成器是一种特殊的迭代器)
  • 什么是协程

    • 比线程更轻量的多任务方式
    • 实现方式
    • yield
    • async-awiat
  • dict 底层结构

    • 为了支持快速查找使用了哈希表作为底层结构
    • 哈希表平均查找时间复杂度为o(1)
    • CPython 解释器使用二次探查解决哈希冲突问题
  • Hash扩容和Hash冲突解决方案

    • 循环复制到新空间实现扩容
    • 冲突解决:
    • 链接法
    • 二次探查(开放寻址法):python使用
for gevent import monkey
monkey.patch_all()  #将代码中所有的阻塞方法都进行修改,可以指定具体要修改的方法
  • 判断是否为生成器或者协程
co_flags = func.__code__.co_flags

# 检查是否是协程
if co_flags & 0x180:
    return func

# 检查是否是生成器
if co_flags & 0x20:
    return func
  • 斐波那契解决的问题及变形
#一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
#请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
#方式一:
fib = lambda n: n if n <= 2 else fib(n - 1) + fib(n - 2)
#方式二:
def fib(n):
    a, b = 1
    for _ in range(n):
        a, b = b, a + b
    return b

#一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
fib = lambda n: n if n < 2 else 2 * fib(n - 1)
  • 获取电脑设置的环境变量
import os
os.getenv(env_name,None)#获取环境变量如果不存在为None
  • 垃圾回收机制
    • 引用计数
    • 标记清除
    • 分代回收
#查看分代回收触发
import gc
gc.get_threshold()  #output:(7001010)
  • True 和 False 在代码中完全等价于1和0,可以直接和数字进行计算,inf 表示无穷大

  • C10M/C10K

    • C10M:8核心cpu,64G内存,在10gbps的网络上保持1000万并发连接
    • C10K:1GHz CPU,2G内存,1gbps网络环境下保持1万个客户端提供FTP服务
  • yield from 与 yield 的区别:

    • yield from 跟的是一个可迭代对象,而 yield 后面没有限制
    • GeneratorExit 生成器停止时触发
  • 单下划线的几种使用

    • 在定义变量时,表示为私有变量
    • 在解包时,表示舍弃无用的数据
    • 在交互模式中表示上一次代码执行结果
    • 可以做数字的拼接(111_222_333)
  • 使用 brea k就不会执行 else

  • 10进制转2进制

def conver_bin(num):
    if num == :
        return num
    re = []
    while num:
        num, rem = divmod(num,2)
        re.append(str(rem))
    return "".join(reversed(re))
  conver_bin(10)
  • list1 = ['A', 'B', 'C', 'D'] 如何才能得到以list中元素命名的新列表 A=[],B=[],C=[],D=[]呢
list1 = ['A''B''C''D']

# 方法一
for i in list1:
    globals()[i] = []   # 可以用于实现python版反射

# 方法二
for i in list1:
    exec(f'{i} = []')   # exec执行字符串语句
  • memoryview与bytearray
# bytearray是可变的,bytes是不可变的,memoryview不会产生新切片和对象
a = 'aaaaaa'
ma = memoryview(a)
ma.readonly  # 只读的memoryview
mb = ma[:2]  # 不会产生新的字符串

a = bytearray('aaaaaa')
ma = memoryview(a)
ma.readonly  # 可写的memoryview
mb = ma[:2]      # 不会会产生新的bytearray
mb[:2] = 'bb'    # 对mb的改动就是对ma的改动
  • Ellipsis类型
# 代码中出现...省略号的现象就是一个Ellipsis对象
L = [1,2,3]
L.append(L)
print(L)    # output:[1,2,3,[…]]
  • lazy惰性计算
class lazy(object):
    def __init__(self, func):
        self.func = func

    def __get__(self, instance, cls):
        val = self.func(instance)    #其相当于执行的area(c),c为下面的Circle对象
        setattr(instance, self.func.__name__, val)
        return val`

class Circle(object):
    def __init__(self, radius):
        self.radius = radius

    @lazy
    def area(self):
        print('evalute')
        return 3.14 * self.radius ** 2
  • 遍历文件,传入一个文件夹,将里面所有文件的路径打印出来(递归)
all_files = []    
def getAllFiles(directory_path):
    import os                                       
    for sChild in os.listdir(directory_path):                
        sChildPath = os.path.join(directory_path,sChild)
        if os.path.isdir(sChildPath):
            getAllFiles(sChildPath)
        else:
            all_files.append(sChildPath)
    return all_files
  • 文件存储时,文件名的处理
#secure_filename将字符串转化为安全的文件名
from werkzeug import secure_filename
secure_filename("My cool movie.mov"# output:My_cool_movie.mov
secure_filename("../../../etc/passwd"# output:etc_passwd
secure_filename(u'i contain cool \xfcml\xe4uts.txt'# output:i_contain_cool_umlauts.txt
  • 日期格式化
from datetime import datetime

datetime.now().strftime("%Y-%m-%d")

import time
#这里只有localtime可以被格式化,time是不能格式化的
time.strftime("%Y-%m-%d",time.localtime())
  • tuple使用+=奇怪的问题
# 会报错,但是tuple的值会改变,因为t[1]id没有发生变化
t=(1,[2,3])
t[1]+=[4,5]
# t[1]使用append\extend方法并不会报错,并可以成功执行
  • __missing__你应该知道
class Mydict(dict):
    def __missing__(self,key): # 当Mydict使用切片访问属性不存在的时候返回的值
        return key
  • +与+=
# +不能用来连接列表和元祖,而+=可以(通过iadd实现,内部实现方式为extends(),所以可以增加元组),+会创建新对象
#不可变对象没有__iadd__方法,所以直接使用的是__add__方法,因此元祖可以使用+=进行元祖之间的相加
  • 如何将一个可迭代对象的每个元素变成一个字典的所有键?
dict.fromkeys(['jim','han'],21# output:{'jim'21'han'21}


网络知识

  • 什么是 HTTPS?

    • 安全的 HTTP 协议,https 需要 cs 证书,数据加密,端口为443,安全,同一网站 https seo 排名会更高
  • 常见响应状态码

204 No Content //请求成功处理,没有实体的主体返回,一般用来表示删除成功
206 Partial Content //Get范围请求已成功处理
303 See Other //临时重定向,期望使用get定向获取
304 Not Modified //请求缓存资源
307 Temporary Redirect //临时重定向,Post不会变成Get
401 Unauthorized //认证失败
403 Forbidden //资源请求被拒绝
400 //请求参数错误
201 //添加或更改成功
503 //服务器维护或者超负载
  • http 请求方法的幂等性及安全性

  • WSGI

# environ:一个包含所有HTTP请求信息的dict对象
# start_response:一个发送HTTP响应的函数
def application(environ, start_response):
    start_response('200 OK', [('Content-Type''text/html')])
    return '<h1>Hello, web!</h1>'
  • RPC

  • CDN

  • SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议。

  • SSH(安全外壳协议) 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定;SSH 为建立在应用层基础上的安全协议。SSH 是目前较可靠,专为远程登录会话和其他网络服务提供安全性的协议。利用 SSH 协议可以有效防止远程管理过程中的信息泄露问题。SSH初是UNIX系统上的一个程序,后来又迅速扩展到其他操作平台。SSH在正确使用时可弥补网络中的漏洞。SSH客户端适用于多种平台。几乎所有UNIX平台—包括HP-UX、Linux、AIX、Solaris、Digital UNIX、Irix,以及其他平台,都可运行SSH。

  • TCP/IP

    • 虽然按道理,四个报文都发送完毕,我们可以直接进入CLOSE状态了,但是我们必须假象网络是不可靠的,有可以后一个ACK丢失。所以TIME_WAIT状态就是用来重发可能丢失的ACK报文。
    • 因为当Server端收到Client端的SYN连接请求报文后,可以直接发送SYN+ACK报文。其中ACK报文是用来应答的,SYN报文是用来同步的。但是关闭连接时,当Server端收到FIN报文时,很可能并不会立即关闭SOCKET,所以只能先回复一个ACK报文,告诉Client端,"你发的FIN报文我收到了"。只有等到我Server端所有的报文都发送完了,我才能发送FIN报文,因此不能一起发送。故需要四步握手。
    • 三次握手(SYN/SYN+ACK/ACK)
    • 四次挥手(FIN/ACK/FIN/ACK)
    • TCP:面向连接/可靠/基于字节流
    • UDP:无连接/不可靠/面向报文
    • 三次握手四次挥手
    • 为什么连接的时候是三次握手,关闭的时候却是四次握手?
    • 为什么TIME_WAIT状态需要经过2MSL(大报文段生存时间)才能返回到CLOSE状态?
  • XSS/CSRF

  • HttpOnly 禁止 js 脚本访问和操作 Cookie,可以有效防止 XSS

Mysql

  • 索引改进过程

    • 线性结构->二分查找->hash->二叉查找树->平衡二叉树->多路查找树->多路平衡查找树(B-Tree)
  • Mysql面试总结基础篇

  • https://segmentfault.com/a/1190000018371218

  • Mysql面试总结进阶篇

    • https://segmentfault.com/a/1190000018380324
  • 深入浅出Mysql

    • http://ningning.today/2017/02/13/database/深入浅出mysql/
  • 清空整个表时,InnoDB是一行一行的删除,而MyISAM则会从新删除建表

  • text/blob数据类型不能有默认值,查询时不存在大小写转换

  • 什么时候索引失效

    • 应尽量避免在 where 子句中使用 != 或 <> 操作符,否则引擎将放弃使用索引而进行全表扫描
    • 尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,即使其中有条件带索引也不会使用,这也是为什么尽量少用 or 的原因
    • 如果列类型是字符串,那一定要在条件中将数据使用引号引用起来,否则不会使用索引
    • 应尽量避免在 where 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描
    • 对于多列索引,不是使用的部分,则不会使用索引
    • 以%开头的like模糊查询
    • 出现隐式类型转换
    • 没有满足左前缀原则
    • 失效场景:
例如:
select id from t where substring(name,1,3) = 'abc'name;
以abc开头的,应改成:
select id from t where name like 'abc%'
例如:
select id from t where datediff(day, createdate, '2005-11-30') = '2005-11-30';
应改为:

不要在 where 子句中的 “=” 左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引

应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描

如:
select id from t where num/2 = 100
应改为:
select id from t where num = 100*2

不适合键值较少的列(重复数据较多的列)比如:set enum列就不适合(枚举类型(enum)可以添加null,并且默认的值会自动过滤空格集合(set)和枚举类似,但只可以添加64个值)

如果MySQL估计使用全表扫描要比使用索引快,则不使用索引

  • 什么是聚集索引
    • B+Tree叶子节点保存的是数据还是指针
    • MyISAM索引和数据分离,使用非聚集
    • InnoDB数据文件就是索引文件,主键索引就是聚集索引

Redis 命令总结

  • 为什么这么快?

    • 因为Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈,那就顺理成章地采用单线程的方案了(毕竟采用多线程会有很多麻烦!)。
    • 基于内存,由 C 语言编写
    • 使用多路I/O复用模型,非阻塞 IO
    • 使用单线程减少线程间切换
    • 数据结构简单
    • 自己构建了 VM 机制,减少调用系统函数的时间
  • 优势

    • 性能高 – Redis 能读的速度是110000次/s,写的速度是81000次/s
    • 丰富的数据类型
    • 原子 – Redis 的所有操作都是原子性的,同时 Redis 还支持对几个操作全并后的原子性执行
    • 丰富的特性 – Redis 还支持 publish/subscribe(发布/订阅), 通知, key 过期等等特性
  • 什么是 redis 事务?

    • 将多个请求打包,一次性、按序执行多个命令的机制
    • 通过 multi,exec,watch 等命令实现事务功能
    • Python redis-py pipeline=conn.pipeline(transaction=True)
  • 持久化方式

    • save(同步,可以保证数据一致性)
    • bgsave(异步,shutdown时,无AOF则默认使用)
    • RDB(快照)
    • AOF(追加日志)
  • 怎么实现队列

    • push
    • rpop
  • 常用的数据类型(Bitmaps,Hyperloglogs,范围查询等不常用)

    • skiplist(跳跃表)
    • intset或hashtable
    • ziplist(连续内存块,每个entry节点头部保存前后节点长度信息实现双向链表功能)或double linked list
    • 整数或sds(Simple Dynamic String)
    • String(字符串):计数器
    • List(列表):用户的关注,粉丝列表
    • Hash(哈希):
    • Set(集合):用户的关注者
    • Zset(有序集合):实时信息排行榜
  • 与 Memcached 区别

    • Memcached只能存储字符串键
    • Memcached用户只能通过APPEND的方式将数据添加到已有的字符串的末尾,并将这个字符串当做列表来使用。但是在删除这些元素的时候,Memcached采用的是通过黑名单的方式来隐藏列表里的元素,从而避免了对元素的读取、更新、删除等操作
    • Redis和Memcached都是将数据存放在内存中,都是内存数据库。不过Memcached还可用于缓存其他东西,例如图片、视频等等
    • 虚拟内存–Redis当物理内存用完时,可以将一些很久没用到的Value 交换到磁盘
    • 存储数据安全–Memcached挂掉后,数据没了;Redis可以定期保存到磁盘(持久化)
    • 应用场景不一样:Redis出来作为NoSQL数据库使用外,还能用做消息队列、数据堆栈和数据缓存等;Memcached适合于缓存SQL语句、数据集、用户临时性数据、延迟查询数据和Session等
  • Redis实现分布式锁

    • 使用setnx实现加锁,可以同时通过expire添加超时时间
    • 锁的value值可以是一个随机的uuid或者特定的命名
    • 释放锁的时候,通过uuid判断是否是该锁,是则执行delete释放锁
  • 常见问题

    • 当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级
    • 数据过期,进行更新缓存数据
    • 初始化项目,将部分常用数据加入缓存
    • 请求访问数据时,查询缓存中不存在,数据库中也不存在
    • 短时间内缓存数据过期,大量请求访问数据库
    • 缓存雪崩
    • 缓存穿透
    • 缓存预热
    • 缓存更新
    • 缓存降级
  • 一致性Hash算法

    • 使用集群的时候保证数据的一致性
  • 基于redis实现一个分布式锁,要求一个超时的参数

    • setnx
  • 虚拟内存

  • 内存抖动

Linux


  • Unix五种i/o模型

    • select
    • poll
    • epoll
    • 并发不高,连接数很活跃的情况下
    • 比select提高的并不多
    • 适用于连接数量较多,但活动链接数少的情况
    • 阻塞io
    • 非阻塞io
    • 多路复用io(Python下使用selectot实现io多路复用)
    • 信号驱动io
    • 异步io(Gevent/Asyncio实现异步)
  • 比 man 更好使用的命令手册

    • tldr:一个有命令示例的手册
  • kill -9和-15的区别

    • -15:程序立刻停止/当程序释放相应资源后再停止/程序可能仍然继续运行
    • -9:由于-15的不确定性,所以直接使用-9立即杀死进程
  • 分页机制(逻辑地址和物理地址分离的内存分配管理方案):

    • 操作系统为了高效管理内存,减少碎片
    • 程序的逻辑地址划分为固定大小的页
    • 物理地址划分为同样大小的帧
    • 通过页表对应逻辑地址和物理地址
  • 分段机制

    • 为了满足代码的一些逻辑需求
    • 数据共享/数据保护/动态链接
    • 每个段内部连续内存分配,段和段之间是离散分配的
  • 查看 cpu 内存使用情况?

    • top
    • free 查看可用内存,排查内存泄漏问题

设计模式


单例模式

# 方式一
def Single(cls,*args,**kwargs):
    instances = {}
    def get_instance (*args, **kwargs):
        if cls not in instances:
            instances[cls] = cls(*args, **kwargs)
        return instances[cls]
    return get_instance
@Single
class B:
    pass
# 方式二
class Single:
    def __init__(self):
        print("单例模式实现方式二。。。")

single = Single()
del Single  # 每次调用single就可以了
# 方式三(常用的方式)
class Single:
    def __new__(cls,*args,**kwargs):
        if not hasattr(cls,'_instance'):
            cls._instance = super().__new__(cls,*args,**kwargs)
        return cls._instance

工厂模式

class Dog:
    def __init__(self):
        print("Wang Wang Wang")
class Cat:
    def __init__(self):
        print("Miao Miao Miao")


def fac(animal):
    if animal.lower() == "dog":
        return Dog()
    if animal.lower() == "cat":
        return Cat()
    print("对不起,必须是:dog,cat")

构造模式

class Computer:
    def __init__(self,serial_number):
        self.serial_number = serial_number
        self.memory = None
        self.hadd = None
        self.gpu = None
    def __str__(self):
        info = (f'Memory:{self.memoryGB}',
        'Hard Disk:{self.hadd}GB',
        'Graphics Card:{self.gpu}')
        return ''.join(info)
class ComputerBuilder
    def __init__(self):

        self.computer = Computer('Jim1996')
    def configure_memory(self,amount):
        self.computer.memory = amount
        return self #为了方便链式调用
    def configure_hdd(self,amount):
        pass
    def configure_gpu(self,gpu_model):
        pass
class HardwareEngineer:
    def __init__(self):
        self.builder = None
    def construct_computer(self,memory,hdd,gpu)
        self.builder = ComputerBuilder()
        self.builder.configure_memory(memory).configure_hdd(hdd).configure_gpu(gpu)
    @property
    def computer(self):

        return self.builder.computer

数据结构和算法

python实现各种数据结构

快速排序

def quick_sort(_list):
    if len(_list) < 2:
        return _list
    pivot_index = 
    pivot = _list(pivot_index)
    left_list = [i for i in _list[:pivot_indexif i < pivot]
    right_list = [i for i in _list[pivot_index:if i > pivot]
    return quick_sort(left) + [pivot] + quick_sort(right)

选择排序

def select_sort(seq):
    n = len(seq)
    for i in range(n-1)
    min_idx = i
        for j in range(i+1,n):
            if seq[j] < seq[min_inx]:
                min_idx = j
        if min_idx != i:
            seq[i], seq[min_idx] = seq[min_idx],seq[i]

插入排序

def insertion_sort(_list):
    n = len(_list)
    for i in range(1,n):
        value = _list[i]
        pos = i
        while pos >  and value < _list[pos - 1]
            _list[pos] = _list[pos - 1]
            pos -= 1
        _list[pos] = value
        print(sql)

归并排序

def merge_sorted_list(_list1,_list2):   #合并有序列表
    len_a, len_b = len(_list1),len(_list2)
    a = b = 
    sort = []
    while len_a > a and len_b > b:
        if _list1[a] > _list2[b]:
            sort.append(_list2[b])
            b += 1
        else:
            sort.append(_list1[a])
            a += 1
    if len_a > a:
        sort.append(_list1[a:])
    if len_b > b:
        sort.append(_list2[b:])
    return sort

def merge_sort(_list):
    if len(list1)<2:
        return list1
    else:
        mid = int(len(list1)/2)
        left = mergesort(list1[:mid])
        right = mergesort(list1[mid:])
        return merge_sorted_list(left,right)

堆排序heapq模块

from heapq import nsmallest
def heap_sort(_list):
    return nsmallest(len(_list),_list)

from collections import deque
class Stack:
    def __init__(self):
        self.s = deque()
    def peek(self):
        p = self.pop()
        self.push(p)
        return p
    def push(self, el):
        self.s.append(el)
    def pop(self):
        return self.pop()

队列

from collections import deque
class Queue:
    def __init__(self):
        self.s = deque()
    def push(self, el):
        self.s.append(el)
    def pop(self):
        return self.popleft()

二分查找

def binary_search(_list,num):
    mid = len(_list)//2
    if len(_list) < 1:
        return Flase
    if num > _list[mid]:
        BinarySearch(_list[mid:],num)
    elif num < _list[mid]:
        BinarySearch(_list[:mid],num)
    else:
        return _list.index(num)


面试加强题

  • 关于数据库优化及设计
    • 使用hash一致算法
    • setnx
    • setnx + expire
    • 使用redis
    • 如果InnoDB表的数据写入顺序能和B+树索引的叶子节点顺序一致的话,这时候存取效率是高的。为了存储和查询性能应该使用自增长id做主键。
    • 对于InnoDB的主索引,数据会按照主键进行排序,由于UUID的无序性,InnoDB会产生巨大的IO压力,此时不适合使用UUID做物理主键,可以把它作为逻辑主键,物理主键依然使用自增ID。为了全局的性,应该用uuid做索引关联其他表或做外键
    • https://segmentfault.com/a/1190000018426586
    • 如何使用两个栈实现一个队列
    • 反转链表
    • 合并两个有序链表
    • 删除链表节点
    • 反转二叉树
    • 设计短网址服务?62进制实现
    • 设计一个秒杀系统(feed流)?
    • https://www.jianshu.com/p/ea0259d109f9
    • 为什么mysql数据库的主键使用自增的整数比较好?使用uuid可以吗?为什么?
    • 如果是分布式系统下我们怎么生成数据库的自增id呢?
    • 基于redis实现一个分布式锁,要求一个超时的参数
      如果redis单个节点宕机了,如何处理?还有其他业界的方案实现分布式锁码?


缓存算法


  • LRU(least-recently-used):替换近少使用的对象

  • LFU(Least frequently used):不经常使用,如果一个数据在近一段时间内使用次数很少,那么在将来一段时间内被使用的可能性也很小

服务端性能优化方向

  • 使用数据结构和算法

  • 数据库

    • slow_query_log_file开启并且查询慢查询日志
    • 通过explain排查索引问题
    • 调整数据修改索引
    • 索引优化
    • 慢查询消除
    • 批量操作,从而减少io操作
    • 使用NoSQL:比如Redis
  • 网络io

    • 批量操作
    • pipeline
  • 缓存

    • Redis
  • 异步

    • Asyncio实现异步操作
    • 使用Celery减少io阻塞
  • 并发

  • 多线程

  • Gevent

来自:SegmentFault ,作者:二十一

链接:https://segmentfault.com/a/1190000018737045

好了,今天的分享就到这里,喜欢就点个赞吧!




相关文章