不同并发场景下LongAdder与AtomicLong如何选择

2021-11-29 00:00:00 线程 测试 方法 性能 自旋



来源:https://juejin.cn/post/6921595303460241415

| 写在前面

本篇文章并不会直接进入主题讲为什么LongAdder性能好于AtomicLong,而是先介绍一下volatile,一是可以将近所学理一下,二是我觉得AtomicLong是为了解决volatile不适用的场景,就当是一个铺垫,然后在介绍AtomicLong,后在介绍LongAdder以及LongAdder和AtomicLong的性能比较 ,如果直接想看原因直接跳转至文末:产生性能差异的原因。

| volatile

volatile关键字可以理解为轻量级的synchronized,它的使用不会引起线程上下文的切换和调度,使用成本比synchronized低。但是volatile只保证了可见性,所谓可见性是指:当一线程修改了被volatile修饰的变量时,新值对其他线程来说总是立即可知的。volatile不适用于i++这样的计算场景,即运算结果依赖变量的当前值。看个例子:VolatileTest.java。
public class VolatileTest {
    private static final int THREAD_COUNT = 20;

    private static volatile int race = ;

    public static void increase() {
        race++;
    }

    public static void main(String[] args) {
        Thread[] threads = new Thread[THREAD_COUNT];
        for (int i = ; i < THREAD_COUNT; i++) {
            threads[i] = new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = ; i < 1000; i++) {
                        increase();
                    }
                }
            });
            threads[i].start();
        }

        //等所有累加线程都结束
        while (Thread.activeCount() > 1) {
            Thread.yield();
        }

        System.out.println("race: " + race);
    }
}
这个方法的功能很简单,就是每个线程对race进行1000次自增操作,20个线程对race执行自增,20 * 1000 = 20000才对,然而无论对程序运行多少次,结果都是小于20000的。
原因出在increase方法上,虽然increase方法只有一行,但是反编译以后会发现只有一行代码的increase方法是由四行字节码指令构成的。
| AtomicLong
虽然通过对increase方法加锁可以保证结果的正确性,但是synchronized、ReentLock都是互斥锁,同一时刻只允许一个线程执行其余线程只能等待,执行效率会非常差。还好jdk针对这种运算的场景提供了原子类,将上述被volatile修饰的int类型的race变量修改为AtomicLong类型,代码如下:AtomicLongTest.java。
public class AtomicLongTest {
    private static final int THREAD_COUNT = 20;

    private static volatile AtomicLong race = new AtomicLong();

    public static void increase() {
        race.getAndIncrement();
    }

    public static void main(String[] args) {
        Thread[] threads = new Thread[THREAD_COUNT];
        for (int i = ; i < THREAD_COUNT; i++) {
            threads[i] = new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = ; i < 1000; i++) {
                        increase();
                    }
                }
            });
            threads[i].start();
        }

        //等所有累加线程都结束
        while (Thread.activeCount() > 1) {
            Thread.yield();
        }

        System.out.println("race: " + race);
    }
}
运算后得到了预期结果:20000。
虽然AtomicLong可以保证结果的正确性,但是在高并发场景下,使用AtomicLong的性能并不好。为了解决性能的问题,jdk1.8中引进了LongAdder。

| LongAdder

LongAdder的使用姿势和AtomicLong类似,将上面代码中的AtomicLong修改为LongAdder,测试代码如下:
public class LongAdderTest {
    private static final int THREAD_COUNT = 20;

    //默认初始化为0值
    private static volatile LongAdder race = new LongAdder();

    public static void increase() {
        race.increment();
    }

    public static void main(String[] args) {
        Thread[] threads = new Thread[THREAD_COUNT];
        for (int i = ; i < THREAD_COUNT; i++) {
            threads[i] = new Thread(new Runnable() {
                @Override
                public void run() {
                    for (int i = ; i < 1000; i++) {
                        increase();
                    }
                }
            });
            threads[i].start();
        }

        while (Thread.activeCount() > 1) {
            Thread.yield();
        }

        System.out.println("race: " + race);
    }
}
结果也是预期的20000。

| AtomicLong和LongAdder性能比较

了解了volatile关键字,AtomicLong和LongAdder后,来测试一下AtomicLong和LongAdder性能,两者的功能都差不多,如何选择应该用数据说话
使用JMH做Benchmark基准测试,测试代码如下:
@BenchmarkMode(Mode.Throughput)
@OutputTimeUnit(TimeUnit.MILLISECONDS)
public class PerformaceTest {
    private static AtomicLong atomicLong = new AtomicLong();
    private static LongAdder longAdder = new LongAdder();

    @Benchmark
    @Threads(10)
    public void atomicLongAdd() {
        atomicLong.getAndIncrement();
    }

    @Benchmark
    @Threads(10)
    public void longAdderAdd() {
        longAdder.increment();
    }

    public static void main(String[] args) throws RunnerException {
        Options options = new OptionsBuilder().include(PerformaceTest.class.getSimpleName()).build();
        new Runner(options).run();
    }
}
说明:
  • @BenchmarkMode(Mode.Throughput) => 测试吞吐量
  • @OutputTimeUnit(TimeUnit.MILLISECONDS) => 输出的时间单位
  • @Threads(10) => 每个进程中的测试线程数
测试结果:
线程数为1:
Benchmark                      Mode  Cnt       Score     Error   Units
PerformaceTest.atomicLongAdd  thrpt  200  153824.699 ± 137.947  ops/ms
PerformaceTest.longAdderAdd   thrpt  200  124087.220 ±  81.015  ops/ms
线程数为5:
PerformaceTest.atomicLongAdd  thrpt  200   56392.136 ± 1165.361  ops/ms
PerformaceTest.longAdderAdd   thrpt  200  605501.870 ± 4140.190  ops/ms
线程数为10:
Benchmark                      Mode  Cnt       Score      Error   Units
PerformaceTest.atomicLongAdd  thrpt  200   53286.334 ±  957.765  ops/ms
PerformaceTest.longAdderAdd   thrpt  200  713884.602 ± 3950.884  ops/ms
从测试结果来看,当线程数为5时,LongAdder的性能已经优于AtomicLong。

| 产生性能差异的原因

分析性能差异必须深入源码,对源码进行剖析,首先先看下AtomicLong的getAndIncrement方法。
AtomicLong#getAndIncrement方法分析
//AtomicLong#getAndIncrement
public final long getAndIncrement() {
    return unsafe.getAndAddLong(this, valueOffset, 1L);
}

//Unsafe#getAndAddLong
public final long getAndAddLong(Object var1, long var2, long var4) {
    long var6;
    do {
        var6 = this.getLongVolatile(var1, var2);
    } while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4));

    return var6;
}

底层使用的是CAS算法,JVM中的CAS操作是利用了处理器提供的CMPXCHG指令实现的。自旋CAS实现的基本思路就是循环进行CAS操作直到成功为止,也正是因为这样的实现思路也带来了在高并发下的性能问题。循环时间长开销大,自旋CAS如果长时间不成功,会给处理器带来非常大的执行开销。在高并发环境下,N个线程同时进行自旋操作,会出现大量失败并不断自旋的情况,所以在上述测试中,当测试线程数非常多时,使用LongAdder的性能优于使用AtomicLong。
LongAdder#increment方法分析
public void increment() {
    add(1L);
}

public void add(long x) {
    Cell[] as; long b, v; int m; Cell a;
    if ((as = cells) != null || !casBase(b = base, b + x)) {
        boolean uncontended = true;
        if (as == null || (m = as.length - 1) <  ||
            (a = as[getProbe() & m]) == null ||
            !(uncontended = a.cas(v = a.value, v + x)))
            longAccumulate(x, null, uncontended);
    }
}

final void longAccumulate(long x, LongBinaryOperator fn,
                              boolean wasUncontended)
 
{
    int h;
    if ((h = getProbe()) == ) {
        ThreadLocalRandom.current(); // force initialization
        h = getProbe();
        wasUncontended = true;
    }
    boolean collide = false;                // True if last slot nonempty
    for (;;) {
        Cell[] as; Cell a; int n; long v;
        if ((as = cells) != null && (n = as.length) > ) {
            if ((a = as[(n - 1) & h]) == null) {
                if (cellsBusy == ) {       // Try to attach new Cell
                    Cell r = new Cell(x);   // Optimistically create
                    if (cellsBusy ==  && casCellsBusy()) {
                        boolean created = false;
                        try {               // Recheck under lock
                            Cell[] rs; int m, j;
                            if ((rs = cells) != null &&
                                (m = rs.length) >  &&
                                rs[j = (m - 1) & h] == null) {
                                rs[j] = r;
                                created = true;
                            }
                        } finally {
                            cellsBusy = ;
                        }
                        if (created)
                            break;
                        continue;           // Slot is now non-empty
                    }
                }
                collide = false;
            }
            else if (!wasUncontended)       // CAS already known to fail
                wasUncontended = true;      // Continue after rehash
            else if (a.cas(v = a.value, ((fn == null) ? v + x :
                                             fn.applyAsLong(v, x))))
                break;
            else if (n >= NCPU || cells != as)
                collide = false;            // At max size or stale
            else if (!collide)
                collide = true;
            else if (cellsBusy ==  && casCellsBusy()) {
                try {
                    if (cells == as) {      // Expand table unless stale
                        Cell[] rs = new Cell[n << 1];
                        for (int i = ; i < n; ++i)
                            rs[i] = as[i];
                        cells = rs;
                    }
                } finally {
                    cellsBusy = ;
                }
                collide = false;
                continue;                   // Retry with expanded table
            }
            h = advanceProbe(h);
        }
        else if (cellsBusy ==  && cells == as && casCellsBusy()) {
            boolean init = false;
            try {                           // Initialize table
                if (cells == as) {
                    Cell[] rs = new Cell[2];
                    rs[h & 1] = new Cell(x);
                    cells = rs;
                    init = true;
                }
            } finally {
                cellsBusy = ;
            }
            if (init)
                break;
        }
        else if (casBase(v = base, ((fn == null) ? v + x :
                                        fn.applyAsLong(v, x))))
            break;                          // Fall back on using base
    }
}
代码很长,可以结合图片理解:

LongAdder性能高的原因是通过使用Cell数组,以空间换效率避免共享变量的竞争,在LongAdder中内部使用base变量保存Long值 ,当没有线程冲突时,使用CAS更新base的值,而存在线程冲突时,没有执行CAS成功的线程将CAS操作Cell数组,将数组中的元素置为1,即cell[i]=1,后获取计数时会计算cell[i]的总和在加base,即为后的计数结果,sum代码如下:
public long sum() {
    Cell[] as = cells; Cell a;
    long sum = base;
    if (as != null) {
        for (int i = ; i < as.length; ++i) {
            if ((a = as[i]) != null)
                sum += a.value;
        }
    }
    return sum;
}

| AtomicLong和LongAdder选择

高并发下选择LongAdder,非高并发下选择AtomicLong。

-End-



相关文章