Java字符串拼接的五种方法,哪种性能好?

2021-10-28 00:00:00 执行 字符串 方法 拼接 加号
来源:https://www.cnblogs.com/twzheng/p/5923642.html

字符串拼接一般使用“+”,但是“+”不能满足大批量数据的处理,Java中有以下五种方法处理字符串拼接,各有优缺点,程序开发应选择合适的方法实现。

  1. 加号 “+”


  2. String contact() 方法


  3. StringUtils.join() 方法


  4. StringBuffer append() 方法


  5. StringBuilder append() 方法


经过简单的程序测试,从执行100次到90万次的时间开销如下表:


由此可以看出:

  1. 方法1 加号 “+” 拼接 和 方法2 String contact() 方法 适用于小数据量的操作,代码简洁方便,加号“+” 更符合我们的编码和阅读习惯;


  2. 方法3 StringUtils.join() 方法 适用于将ArrayList转换成字符串,就算90万条数据也只需68ms,可以省掉循环读取ArrayList的代码;


  3. 方法4 StringBuffer append() 方法 和 方法5 StringBuilder append() 方法 其实他们的本质是一样的,都是继承自AbstractStringBuilder,效率高,大批量的数据处理好选择这两种方法。


  4. 方法1 加号 “+” 拼接 和 方法2 String contact() 方法 的时间和空间成本都很高(分析在本文末尾),不能用来做批量数据的处理。


源代码,供参考
package cnblogs.twzheng.lab2;
/** * @author Tan Wenzheng * */import java.util.ArrayList;import java.util.List;
import org.apache.commons.lang3.StringUtils;
public class TestString {
private static final int max = 100;
public void testPlus() { System.out.println(">>> testPlus() <<<");
String str = "";
long start = System.currentTimeMillis();
for (int i = ; i < max; i++) { str = str + "a"; }
long end = System.currentTimeMillis();
long cost = end - start;
System.out.println(" {str + \"a\"} cost=" + cost + " ms"); }
public void testConcat() { System.out.println(">>> testConcat() <<<");
String str = "";
long start = System.currentTimeMillis();
for (int i = ; i < max; i++) { str = str.concat("a"); }
long end = System.currentTimeMillis();
long cost = end - start;
System.out.println(" {str.concat(\"a\")} cost=" + cost + " ms"); }
public void testJoin() { System.out.println(">>> testJoin() <<<");
long start = System.currentTimeMillis();
List<String> list = new ArrayList<String>();
for (int i = ; i < max; i++) { list.add("a"); }
long end1 = System.currentTimeMillis(); long cost1 = end1 - start;
StringUtils.join(list, "");
long end = System.currentTimeMillis(); long cost = end - end1;
System.out.println(" {list.add(\"a\")} cost1=" + cost1 + " ms"); System.out.println(" {StringUtils.join(list, \"\")} cost=" + cost + " ms"); }
public void testStringBuffer() { System.out.println(">>> testStringBuffer() <<<");
long start = System.currentTimeMillis();
StringBuffer strBuffer = new StringBuffer();
for (int i = ; i < max; i++) { strBuffer.append("a"); } strBuffer.toString();
long end = System.currentTimeMillis();
long cost = end - start;
System.out.println(" {strBuffer.append(\"a\")} cost=" + cost + " ms"); }
public void testStringBuilder() { System.out.println(">>> testStringBuilder() <<<");
long start = System.currentTimeMillis();
StringBuilder strBuilder = new StringBuilder();
for (int i = ; i < max; i++) { strBuilder.append("a"); } strBuilder.toString();
long end = System.currentTimeMillis();
long cost = end - start;
System.out .println(" {strBuilder.append(\"a\")} cost=" + cost + " ms"); }}

测试结果:

  1. 执行100次, private static final int max = 100;
>>> testPlus() <<< {str + "a"} cost= ms>>> testConcat() <<< {str.concat("a")} cost= ms>>> testJoin() <<< {list.add("a")} cost1= ms {StringUtils.join(list, "")} cost=20 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost= ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost= ms

  1. 执行1000次, private static final int max = 1000;
>>> testPlus() <<< {str + "a"} cost=10 ms>>> testConcat() <<< {str.concat("a")} cost= ms>>> testJoin() <<< {list.add("a")} cost1= ms {StringUtils.join(list, "")} cost=20 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost= ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost= ms

  1. 执行1万次, private static final int max = 10000;
>>> testPlus() <<< {str + "a"} cost=150 ms>>> testConcat() <<< {str.concat("a")} cost=70 ms>>> testJoin() <<< {list.add("a")} cost1= ms {StringUtils.join(list, "")} cost=30 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost= ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost= ms

  1. 执行10万次, private static final int max = 100000;
>>> testPlus() <<< {str + "a"} cost=4198 ms>>> testConcat() <<< {str.concat("a")} cost=1862 ms>>> testJoin() <<< {list.add("a")} cost1=21 ms {StringUtils.join(list, "")} cost=49 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost=10 ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost=10 ms

  1. 执行20万次, private static final int max = 200000;
>>> testPlus() <<< {str + "a"} cost=17196 ms>>> testConcat() <<< {str.concat("a")} cost=7653 ms>>> testJoin() <<< {list.add("a")} cost1=20 ms {StringUtils.join(list, "")} cost=51 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost=20 ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost=16 ms

  1. 执行50万次, private static final int max = 500000;
>>> testPlus() <<< {str + "a"} cost=124693 ms>>> testConcat() <<< {str.concat("a")} cost=49439 ms>>> testJoin() <<< {list.add("a")} cost1=21 ms {StringUtils.join(list, "")} cost=50 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost=20 ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost=10 ms

  1. 执行90万次, private static final int max = 900000;
>>> testPlus() <<< {str + "a"} cost=456739 ms>>> testConcat() <<< {str.concat("a")} cost=186252 ms>>> testJoin() <<< {list.add("a")} cost1=20 ms {StringUtils.join(list, "")} cost=68 ms>>> testStringBuffer() <<< {strBuffer.append("a")} cost=30 ms>>> testStringBuilder() <<< {strBuilder.append("a")} cost=24 ms

查看源代码,以及简单分析

String contact 和 StringBuffer,StringBuilder 的源代码都可以在Java库里找到,有空可以研究研究。

  1. 其实每次调用contact()方法就是一次数组的拷贝,虽然在内存中是处理都是原子性操作,速度非常快,但是,后的return语句会创建一个新String对象,限制了concat方法的速度。
 
public String concat(String str) { int otherLen = str.length(); if (otherLen == ) { return this; } int len = value.length; char buf[] = Arrays.copyOf(value, len + otherLen); str.getChars(buf, len); return new String(buf, true); }

  1. StringBuffer 和 StringBuilder 的append方法都继承自AbstractStringBuilder,整个逻辑都只做字符数组的加长,拷贝,到后也不会创建新的String对象,所以速度很快,完成拼接处理后在程序中用strBuffer.toString()来得到终的字符串。

/** * Appends the specified string to this character sequence. * <p> * The characters of the {@code String} argument are appended, in * order, increasing the length of this sequence by the length of the * argument. If {@code str} is {@code null}, then the four * characters {@code "null"} are appended. * <p> * Let <i>n</i> be the length of this character sequence just prior to * execution of the {@code append} method. Then the character at * index <i>k</i> in the new character sequence is equal to the character * at index <i>k</i> in the old character sequence, if <i>k</i> is less * than <i>n</i>; otherwise, it is equal to the character at index * <i>k-n</i> in the argument {@code str}. * * @param str a string. * @return a reference to this object. */ public AbstractStringBuilder append(String str) { if (str == null) str = "null"; int len = str.length(); ensureCapacityInternal(count + len); str.getChars(, len, value, count); count += len; return this; }
/** * This method has the same contract as ensureCapacity, but is * never synchronized. */ private void ensureCapacityInternal(int minimumCapacity) { // overflow-conscious code if (minimumCapacity - value.length > ) expandCapacity(minimumCapacity); }
/** * This implements the expansion semantics of ensureCapacity with no * size check or synchronization. */ void expandCapacity(int minimumCapacity) { int newCapacity = value.length * 2 + 2; if (newCapacity - minimumCapacity < ) newCapacity = minimumCapacity; if (newCapacity < ) { if (minimumCapacity < ) // overflow throw new OutOfMemoryError(); newCapacity = Integer.MAX_VALUE; } value = Arrays.copyOf(value, newCapacity); }

  1. 字符串的加号“+” 方法, 虽然编译器对其做了优化,使用StringBuilder的append方法进行追加,但是每循环一次都会创建一个StringBuilder对象,且都会调用toString方法转换成字符串,所以开销很大。

    注:执行一次字符串“+”,相当于 str = new StringBuilder(str).append("a").toString();

  1. 本文开头的地方统计了时间开销,根据上述分析再想想空间的开销。常说拿空间换时间,反过来是不是拿时间换到了空间呢,但是在这里,其实时间是消耗在了重复的不必要的工作上(生成新的对象,toString方法),所以对大批量数据做处理时,加号“+” 和 contact 方法不能用,时间和空间成本都很高。




相关文章