这篇文章我想和你聊一聊 Redis 的架构演化之路。现如今 Redis 变得越来越流行,几乎在很多项目中都要被用到,不知道你在使用 Redis 时,有没有思考过,Redis 到底是如何稳定、高性能地提供服务的?
- 我使用 Redis 的场景很简单,只使用单机版 Redis 会有什么问题吗?
- 我的 Redis 故障宕机了,数据丢失了怎么办?如何能保证我的业务应用不受影响?
如果你对 Redis 已经有些了解,肯定也听说过数据持久化、主从复制、哨兵这些概念,它们之间又有什么区别和联系呢?如果你存在这样的疑惑,这篇文章,我会从 0 到 1,再从 1 到 N,带你一步步构建出一个稳定、高性能的 Redis 集群。在这个过程中,你可以了解到 Redis 为了做到稳定、高性能,都采取了哪些优化方案,以及为什么要这么做?掌握了这些原理,这样平时你在使用 Redis 时,就能够做到「游刃有余」。从简单的开始:单机版 Redis
首先,我们从简单的场景开始。
假设现在你有一个业务应用,需要引入 Redis 来提高应用的性能,此时你可以选择部署一个单机版的 Redis 来使用,就像这样:
这个架构非常简单,你的业务应用可以把 Redis 当做缓存来使用,从 MySQL 中查询数据,然后写入到 Redis 中,之后业务应用再从 Redis 中读取这些数据,由于 Redis 的数据都存储在内存中,所以这个速度飞快。如果你的业务体量并不大,那这样的架构模型基本可以满足你的需求。是不是很简单?随着时间的推移,你的业务体量逐渐发展起来了,Redis 中存储的数据也越来越多,此时你的业务应用对 Redis 的依赖也越来越重。但是,突然有一天,你的 Redis 因为某些原因宕机了,这时你的所有业务流量,都会打到后端 MySQL 上,这会导致你的 MySQL 压力剧增,严重的话甚至会压垮 MySQL。我猜你的方案肯定是,赶紧重启 Redis,让它可以继续提供服务。但是,因为之前 Redis 中的数据都在内存中,尽管你现在把 Redis 重启了,之前的数据也都丢失了。重启后的 Redis 虽然可以正常工作,但是由于 Redis 中没有任何数据,业务流量还是都会打到后端 MySQL 上,MySQL 的压力还是很大。既然 Redis 只把数据存储在内存中,那是否可以把这些数据也写一份到磁盘上呢?如果采用这种方式,当 Redis 重启时,我们把磁盘中的数据快速恢复到内存中,这样它就可以继续正常提供服务了。是的,这是一个很好的解决方案,这个把内存数据写到磁盘上的过程,就是「数据持久化」。数据持久化:有备无患
现在,你设想的 Redis 数据持久化是这样的:
我猜你容易想到的一个方案是,Redis 每一次执行写操作,除了写内存之外,同时也写一份到磁盘上,就像这样:但仔细想一下,这个方案有个问题:客户端的每次写操作,既需要写内存,又需要写磁盘,而写磁盘的耗时相比于写内存来说,肯定要慢很多!这势必会影响到 Redis 的性能。我们可以这样优化:Redis 写内存由主线程来做,写内存完成后就给客户端返回结果,然后 Redis 用另一个线程去写磁盘,这样就可以避免主线程写磁盘对性能的影响。这确实是一个好方案。除此之外,我们可以换个角度,思考一下还有什么方式可以持久化数据?回忆一下,我们在使用 Redis 时,通常把它用作什么场景?把 Redis 当做缓存来用,意味着尽管 Redis 中没有保存全量数据,对于不在缓存中的数据,我们的业务应用依旧可以通过查询后端数据库得到结果,只不过查询后端数据的速度会慢一点而已,但对业务结果其实是没有影响的。基于这个特点,我们的 Redis 数据持久化还可以用「数据快照」的方式来做。
- 你把 Redis 想象成一个水杯,向 Redis 写入数据,就相当于往这个杯子里倒水
- 此时你拿一个相机给这个水杯拍一张照片,拍照的这一瞬间,照片中记录到这个水杯中水的容量,就是水杯的数据快照
也就是说,Redis 的数据快照,是记录某一时刻下 Redis 中的数据,然后只需要把这个数据快照写到磁盘上就可以了。它的优势在于,只在需要持久化时,把数据「一次性」写入磁盘,其它时间都不需要操作磁盘。基于这个方案,我们可以定时给 Redis 做数据快照,把数据持久化到磁盘上。其实,上面说的这些持久化方案,就是 Redis 的「RDB」和「AOF」:
- RDB:只持久化某一时刻的数据快照到磁盘上(创建一个子进程来做)
- AOF:每一次写操作都持久到磁盘(主线程写内存,根据策略可以配置由主线程还是子线程进行数据持久化)
- RDB 采用二进制 + 数据压缩的方式写磁盘,这样文件体积小,数据恢复速度也快
- AOF 记录的是每一次写命令,数据全,但文件体积大,数据恢复速度慢
- 如果你的业务对于数据丢失不敏感,采用 RDB 方案持久化数据
- 如果你的业务对数据完整性要求比较高,采用 AOF 方案持久化数据
假设你的业务对 Redis 数据完整性要求比较高,选择了 AOF 方案,那此时你又会遇到这些问题:
- AOF 记录每一次写操作,随着时间增长,AOF 文件体积会越来越大
这怎么办?数据完整性要求变高了,恢复数据也变困难了?有没有什么方法,可以缩小文件体积?提升恢复速度呢?由于 AOF 文件中记录的都是每一次写操作,但对于同一个 key 可能会发生多次修改,我们只保留后一次被修改的值,是不是也可以?是的,这就是我们经常听到的「AOF rewrite」,你也可以把它理解为 AOF 「瘦身」。我们可以对 AOF 文件定时 rewrite,避免这个文件体积持续膨胀,这样在恢复时就可以缩短恢复时间了。再进一步思考一下,还有没有办法继续缩小 AOF 文件?回顾一下我们前面讲到的,RDB 和 AOF 各自的特点:
- RDB 以二进制 + 数据压缩方式存储,文件体积小
具体来说,当 AOF rewrite 时,Redis 先以 RDB 格式在 AOF 文件中写入一个数据快照,再把在这期间产生的每一个写命令,追加到 AOF 文件中。因为 RDB 是二进制压缩写入的,这样 AOF 文件体积就变得更小了。此时,你在使用 AOF 文件恢复数据时,这个恢复时间就会更短了!
Redis 4.0 以上版本才支持混合持久化。
这么一番优化,你的 Redis 再也不用担心实例宕机了,当发生宕机时,你就可以用持久化文件快速恢复 Redis 中的数据。仔细想一下,虽然我们已经把持久化的文件优化到小了,但在恢复数据时依旧是需要时间的,在这期间你的业务应用还是会受到影响,这怎么办?一个实例宕机,只能用恢复数据来解决,那我们是否可以部署多个 Redis 实例,然后让这些实例数据保持实时同步,这样当一个实例宕机时,我们在剩下的实例中选择一个继续提供服务就好了。没错,这个方案就是接下来要讲的「主从复制:多副本」。主从复制:多副本
此时,你可以部署多个 Redis 实例,架构模型就变成了这样:
我们这里把实时读写的节点叫做 master,另一个实时同步数据的节点叫做 slave。
采用多副本的方案,它的优势是:
缩短不可用时间:master 发生宕机,我们可以手动把 slave 提升为 master 继续提供服务
提升读性能:让 slave 分担一部分读请求,提升应用的整体性能
这个方案不错,不仅节省了数据恢复的时间,还能提升性能,那它有什么问题吗?其实,它的问题在于:当 master 宕机时,我们需要「手动」把 slave 提升为 master,这个过程也是需要花费时间的。虽然比恢复数据要快得多,但还是需要人工介入处理。一旦需要人工介入,就必须要算上人的反应时间、操作时间,所以,在这期间你的业务应用依旧会受到影响。怎么解决这个问题?我们是否可以把这个切换的过程,变成自动化呢?对于这种情况,我们需要一个「故障自动切换」机制,这就是我们经常听到的「哨兵」所具备的能力。哨兵:故障自动切换
现在,我们可以引入一个「观察者」,让这个观察者去实时监测 master 的健康状态,这个观察者就是「哨兵」。
- master 正常回复,表示状态正常,回复超时表示异常
有了这个方案,就不需要人去介入处理了,一切就变得自动化了,是不是很爽?但这里还有一个问题,如果 master 状态正常,但这个哨兵在询问 master 时,它们之间的网络发生了问题,那这个哨兵可能会误判。答案是,我们可以部署多个哨兵,让它们分布在不同的机器上,它们一起监测 master 的状态,流程就变成了这样:
- 多个哨兵每间隔一段时间,询问 master 是否正常
- master 正常回复,表示状态正常,回复超时表示异常
- 一旦有一个哨兵判定 master 异常(不管是否是网络问题),就询问其它哨兵,如果多个哨兵(设置一个阈值)都认为 master 异常了,这才判定 master 确实发生了故障
- 多个哨兵经过协商后,判定 master 故障,则发起主从切换
所以,我们用多个哨兵互相协商来判定 master 的状态,这样一来,就可以大大降低误判的概率。哨兵协商判定 master 异常后,这里还有一个问题:由哪个哨兵来发起主从切换呢?
其实,这个选举的过程就是我们经常听到的:分布式系统领域中的「共识算法」。我们在多个机器部署哨兵,它们需要共同协作完成一项任务,所以它们就组成了一个「分布式系统」。在分布式系统领域,多个节点如何就一个问题达成共识的算法,就叫共识算法。在这个场景下,多个哨兵共同协商,选举出一个都认可的,就是使用共识算法完成的。这个算法还规定节点的数量必须是奇数个,这样可以保证系统中即使有节点发生了故障,剩余超过「半数」的节点状态正常,依旧可以提供正确的结果,也就是说,这个算法还兼容了存在故障节点的情况。共识算法在分布式系统领域有很多,例如 Paxos、Raft,哨兵选举这个场景,使用的是 Raft 共识算法,因为它足够简单,且易于实现。
现在,我们用多个哨兵共同监测 Redis 的状态,这样一来,就可以避免误判的问题了,架构模型就变成了这样:你的 Redis 从简单的单机版,经过数据持久化、主从多副本、哨兵集群,这一路优化下来,你的 Redis 不管是性能还是稳定性,都越来越高,就算节点发生故障,也不用担心了。你的 Redis 以这样的架构模式部署,基本上就可以稳定运行很长时间了。随着时间的发展,你的业务体量开始迎来了爆炸性增长,此时你的架构模型,还能够承担这么大的流量吗?我们一起来分析一下:
- 稳定性:Redis 故障宕机,我们有哨兵 + 副本,可以自动完成主从切换
- 性能:读请求量增长,我们可以再部署多个 slave,读写分离,分担读压力
- 性能:写请求量增长,但我们只有一个 master 实例,这个实例达到瓶颈怎么办?
看到了么,当你的写请求量越来越大时,一个 master 实例可能就无法承担这么大的写流量了。要想完美解决这个问题,此时你就需要考虑使用「分片集群」了。分片集群:横向扩展
简单来讲,一个实例扛不住写压力,那我们是否可以部署多个实例,然后把这些实例按照一定规则组织起来,把它们当成一个整体,对外提供服务,这样不就可以解决集中写一个实例的瓶颈问题吗?
- 每个节点各自存储一部分数据,所有节点数据之和才是全量数据
- 制定一个路由规则,对于不同的 key,把它路由到固定一个实例上进行读写
而分片集群根据路由规则所在位置的不同,还可以分为两大类:
客户端分片指的是,key 的路由规则放在客户端来做,就是下面这样:这个方案的缺点是,客户端需要维护这个路由规则,也就是说,你需要把路由规则写到你的业务代码中。你可以这样优化,把这个路由规则封装成一个模块,当需要使用时,集成这个模块就可以了。这就是 Redis Cluster 的采用的方案。Redis Cluster 内置了哨兵逻辑,无需再部署哨兵。
当你使用 Redis Cluster 时,你的业务应用需要使用配套的 Redis SDK,这个 SDK 内就集成好了路由规则,不需要你自己编写了。这种方案指的是,路由规则不放在客户端来做,而是在客户端和服务端之间增加一个「中间代理层」,这个代理就是我们经常听到的 Proxy。而数据的路由规则,就放在这个 Proxy 层来维护。这样一来,你就无需关心服务端有多少个 Redis 节点了,只需要和这个 Proxy 交互即可。Proxy 会把你的请求根据路由规则,转发到对应的 Redis 节点上,而且,当集群实例不足以支撑更大的流量请求时,还可以横向扩容,添加新的 Redis 实例提升性能,这一切对于你的客户端来说,都是透明无感知的。业界开源的 Redis 分片集群方案,例如 Twemproxy、Codis 就是采用的这种方案。分片集群在数据扩容时,还涉及到了很多细节,这块内容不是本文章重点,所以暂不详述。
至此,当你使用分片集群后,对于未来更大的流量压力,都可以从容面对了!
总结
好了,我们来总结一下,我们是如何一步步构建一个稳定、高性能的 Redis 集群的。首先,在使用简单的单机版 Redis 时,我们发现当 Redis 故障宕机后,数据无法恢复的问题,因此我们想到了「数据持久化」,把内存中的数据也持久化到磁盘上一份,这样 Redis 重启后就可以从磁盘上快速恢复数据。在进行数据持久化时,我们又面临如何更高效地将数据持久化到磁盘的问题。之后我们发现 Redis 提供了 RDB 和 AOF 两种方案,分别对应了数据快照和实时的命令记录。当我们对数据完整性要求不高时,可以选择 RDB 持久化方案。如果对于数据完整性要求较高,那么可以选择 AOF 持久化方案。但是我们又发现,AOF 文件体积会随着时间增长变得越来越大,此时我们想到的优化方案是,使用 AOF rewrite 的方式对其进行瘦身,减小文件体积,再后来,我们发现可以结合 RDB 和 AOF 各自的优势,在 AOF rewrite 时使用两者结合的「混合持久化」方式,又进一步减小了 AOF 文件体积。之后,我们发现尽管可以通过数据恢复的方式还原数据,但恢复数据也是需要花费时间的,这意味着业务应用还是会受到影响。我们进一步优化,采用「多副本」的方案,让多个实例保持实时同步,当一个实例故障时,可以手动把其它实例提升上来继续提供服务。但是这样也有问题,手动提升实例上来,需要人工介入,人工介入操作也需要时间,我们开始想办法把这个流程变得自动化,所以我们又引入了「哨兵」集群,哨兵集群通过互相协商的方式,发现故障节点,并可以自动完成切换,这样就大幅降低了对业务应用的影响。后,我们把关注点聚焦在如何支撑更大的写流量上,所以,我们又引入了「分片集群」来解决这个问题,让多个 Redis 实例分摊写压力,未来面对更大的流量,我们还可以添加新的实例,横向扩展,进一步提升集群的性能。至此,我们的 Redis 集群才得以长期稳定、高性能的为我们的业务提供服务。这里我画了一个思维导图,方便你更好地去理解它们之间的关系,以及演化的过程。后记
看到这里,我想你对如何构建一个稳定、高性能的 Redis 集群问题时,应该会有自己的见解了。
其实,这篇文章所讲的优化思路,围绕的主题就是「架构设计」的核心思想:当我们讲到哨兵集群、分片集群时,这还涉及到了「分布式系统」相关的知识:当然,除了 Redis 之外,对于构建任何一个数据集群,你都可以沿用这个思路去思考、去优化,看看它们到底是如何做的。例如当你在使用 MySQL 时,你可以思考一下 MySQL 与 Redis 有哪些不同?MySQL 为了做到高性能、高可用,又是如何做的?其实思路都是类似的。我们现在到处可见分布式系统、数据集群,我希望通过这篇文章,你可以理解这些软件是如何一步步演化过来的,在演化过程中,它们遇到了哪些问题,为了解决这些问题,这些软件的设计者设计了怎样的方案,做了哪些取舍?你只有了解了其中的原理,掌握了分析问题、解决问题的能力,这样在以后的开发过程中,或是学习其它软件时,就能快速地找到「重点」,在短的时间掌握它,并能在实际应用中发挥它们的优势。其实这个思考过程,也是做「架构设计」的思路。在做软件架构设计时,你面临的场景就是发现问题、分析问题、解决问题,一步步去演化、升级你的架构,后在性能、可靠性方面达到一个平衡。虽然各种软件层出不穷,但架构设计的思想不会变,我希望你真正吸收的是这些思想,这样才可以做到以不变应万变。
本文转载自「水滴与银弹」公众号,作者:Kaito。