数据库索引,终于懂了
不少朋友留言问MySQL索引底层的实现,让我讲讲B+树。知其然,知其所以然,讲懂B+树其实不难,今天更多聊聊“数据库索引,为什么设计成这样”。图书馆存了1000W本图书,要从中找到《架构师之路》,一本本查,要查到什么时候去?与之类比,数据库存储了1000W条数据,要从中找到name=”shenjian”的记录,一条条查,要查到什么时候去?问题2. 哈希(hash)比树(tree)更快,索引结构为什么要设计成树型?(1)哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1);(2)树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(lg(n));可以看到,不管是读请求,还是写请求,哈希类型的索引,都要比树型的索引更快一些,那为什么,索引结构要设计成树型呢?select * from t where name=”shenjian”;画外音:所以,如果业务需求都是单行访问,例如passport,确实可以使用哈希索引。哈希型的索引,时间复杂度会退化为O(n),而树型的“有序”特性,依然能够保持O(log(n)) 的高效率。画外音:自适应hash索引,是InnoDB内核机制。二叉搜索树,如上图,是为大家所熟知的一种数据结构,就不展开介绍了,它为什么不适合用作数据库索引?(1)当数据量大的时候,树的高度会比较高,数据量大的时候,查询会比较慢;(2)每个节点只存储一个记录,可能导致一次查询有很多次磁盘IO;画外音:这个树经常出现在大学课本里,所以为大家所熟知。画外音,实在不想介绍这个特性:非根节点包含的关键字个数j满足,(┌m/2┐)-1 <= j <= m-1,节点分裂时要满足这个条件。B树被作为实现索引的数据结构被创造出来,是因为它能够完美的利用“局部性原理”。(2)磁盘预读:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,如果未来要读取的数据就在这一页中,可以避免未来的磁盘IO,提高效率;画外音:通常,操作系统一页数据是4K,MySQL的一页是16K。(3)局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO;(2)每个节点可以存储j个记录,如果将节点大小设置为页大小,例如4K,能够充分的利用预读的特性,极大减少磁盘IO;B+树,如上图,仍是m叉搜索树,在B树的基础上,做了一些改进:(1)非叶子节点不再存储数据,数据只存储在同一层的叶子节点上;画外音:B+树中根到每一个节点的路径长度一样,而B树不是这样。(2)叶子之间,增加了链表,获取所有节点,不再需要中序遍历;(1)范围查找,定位min与max之后,中间叶子节点,就是结果集,不用中序回溯;画外音:范围查询在SQL中用得很多,这是B+树比B树大的优势。(2)叶子节点存储实际记录行,记录行相对比较紧密的存储,适合大数据量磁盘存储;非叶子节点存储记录的PK,用于查询加速,适合内存存储;(3)非叶子节点,不存储实际记录,而只存储记录的KEY的话,那么在相同内存的情况下,B+树能够存储更多索引;后,量化说下,为什么m叉的B+树比二叉搜索树的高度大大大大降低?(1)局部性原理,将一个节点的大小设为一页,一页4K,假设一个KEY有8字节,一个节点可以存储500个KEY,即j=500;(2)m叉树,大概m/2<= j <=m,即可以差不多是1000叉树;二层树:1000个节点,1000*500=50W个KEY,大小1000*4K=4M三层树:1000*1000个节点,1000*1000*500=5亿个KEY,大小1000*1000*4K=4G可以看到,存储大量的数据(5亿),并不需要太高树的深度(高度3),索引也不是太占内存(4G)。(2)虽然哈希索引是O(1),树索引是O(log(n)),但SQL有很多“有序”需求,故数据库使用树型索引;(4)数据预读的思路是:磁盘读写并不是按需读取,而是按页预读,一次会读一页的数据,每次加载更多的数据,以便未来减少磁盘IO(5)局部性原理:软件设计要尽量遵循“数据读取集中”与“使用到一个数据,大概率会使用其附近的数据”,这样磁盘预读能充分提高磁盘IO - 很适合磁盘存储,能够充分利用局部性原理,磁盘预读; - 能够很好的支持单点查询,范围查询,有序性查询;
原文链接:https://mp.weixin.qq.com/s/0x5T-wbAoNVHkKTT61lIUQ