组合游戏1: 详解Minimax 和 Alpha Beta剪枝算法
本系列,我们来看看在一种常见的组合游戏——回合制棋盘类游戏中,如何用算法来解决问题。首先,我们会介绍并解决搜索空间较小的问题,引入经典的博弈算法和相关理论,终实现在大搜索空间中的Deep RL近似算法。在此基础上可以理解AlphaGo的原理和工作方式。本系列的篇,我们介绍3个Leetcode中的零和回合制游戏,从初的暴力解法,到动态规划终演变成博弈论里的经典算法:minimax 以及 alpha beta 剪枝。
获得好的阅读体验,请点击下方 阅读原文,并在电脑上打开
篇 [Leetcode中的Minimax 和 Alpha Beta剪枝]
第二篇: 一些组合游戏的理论
第三篇: 连接N个点 的OpenAI Gym GUI环境
第四篇: 蒙特卡洛树搜索(MCTS)和时间差分学习(TD learning)
Leetcode 292 Nim Game (简单)
简单题 Leetcode 292 Nim Game。
你和你的朋友,两个人一起玩 Nim游戏:桌子上有一堆石头,每次你们轮流拿掉 1 - 3 块石头。拿掉后一块石头的人就是获胜者。你作为先手。
你们是聪明人,每一步都是优解。编写一个函数,来判断你是否可以在给定石头数量的情况下赢得游戏。
示例:
输入: 4
输出: false
解释: 如果堆中有 4 块石头,那么你永远不会赢得比赛;因为无论你拿走 1 块、2 块 还是 3 块石头,后一块石头总是会被你的朋友拿走。
定义 为有个石头并采取优策略的游戏结果, 的值只有可能是赢或者输。考察前几个结果:,然后来计算。因为玩家采取优策略(只要有一种走法让对方必输,玩家获胜),对于4来说,玩家能走的可能是拿掉1块、2块或3块,但是无论剩余何种局面,对方都是必赢,因此,4就是必输。总的说来,递归关系如下:
这个递归式可以直接翻译成Python 3代码
# TLE
# Time Complexity: O(exponential)
class Solution_BruteForce:
def canWinNim(self, n: int) -> bool:
if n <= 3:
return True
for i in range(1, 4):
if not self.canWinNim(n - i):
return True
return False
以上的递归公式和代码很像fibonacci数的递归定义和暴力解法,因此对应的时间复杂度也是指数级的,提交代码以后会TLE。下图画出了当n=7时的递归调用,注意 5 被扩展向下重复执行了两次,4重复了4次。
我们采用和fibonacci一样的方式来优化算法:缓存较小n的结果以此来计算较大n的结果。Python 中,我们可以只加一行lru_cache decorator,来取得这种动态规划效果,下面的代码将复杂度降到了 。
# RecursionError: maximum recursion depth exceeded in comparison n=1348820612
# Time Complexity: O(N)
class Solution_DP:
from functools import lru_cache
@lru_cache(maxsize=None)
def canWinNim(self, n: int) -> bool:
if n <= 3:
return True
for i in range(1, 4):
if not self.canWinNim(n - i):
return True
return False
再来画出调用图:这次5和4就不再被展开重复计算,图中绿色的节点表示缓存命中。
但还是没有AC,因为当n=1348820612时,这种方式会导致栈溢出。再改成下面的循环版本,可惜还是TLE。# TLE for 1348820612
# Time Complexity: O(N)
class Solution:
def canWinNim(self, n: int) -> bool:
if n <= 3:
return True
last3, last2, last1 = True, True, True
for i in range(4, n+1):
this = not (last3 and last2 and last1)
last3, last2, last1 = last2, last1, this
return last1
由此看来,AC 版本需要低于的算法复杂度。上面的写法似乎暗示输赢有周期性的规律。事实上,如果将输赢按照顺序画出来,就马上得出规律了:只要 就是输,否则赢。原因如下:当面临不能被4整除的数量时 ,一方总是可以拿走 个,将 留给对手,而对方下轮又将返回不能被4整除的数,如此循环往复,直到这一方有1, 2, 3 个,终获胜。
终AC版本,只有一句语句。
# AC
# Time Complexity: O(1)
class Solution:
def canWinNim(self, n: int) -> bool:
return not (n % 4 == )
Leetcode 486 Predict the Winner (中等)
中等难度题目:Leetcode 486 Predict the Winner.
给定一个表示分数的非负整数数组。玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,……。每次一个玩家只能拿取一个分数,分数被拿取之后不再可取。直到没有剩余分数可取时游戏结束。终获得分数总和多的玩家获胜。
给定一个表示分数的数组,预测玩家1是否会成为赢家。你可以假设每个玩家的玩法都会使他的分数大化。
示例 1:
输入: [1, 5, 2]
输出: False
解释: 一开始,玩家1可以从1和2中进行选择。
如果他选择2(或者1),那么玩家2可以从1(或者2)和5中进行选择。如果玩家2选择了5,那么玩家1则只剩下1(或者2)可选。
所以,玩家1的终分数为 1 + 2 = 3,而玩家2为 5。
因此,玩家1永远不会成为赢家,返回 False。
示例 2:
输入: [1, 5, 233, 7]
输出: True
解释: 玩家1一开始选择1。然后玩家2必须从5和7中进行选择。无论玩家2选择了哪个,玩家1都可以选择233。
终,玩家1(234分)比玩家2(12分)获得更多的分数,所以返回 True,表示玩家1可以成为赢家。
对于当前玩家,他有两种选择:左边或者右边的数。定义 maxDiff(l, r) 为剩余子数组时,当前玩家能取得的大分差,那么
对应的时间复杂度可以写出递归式,显然是指数级的:
采用暴力解法可以AC,但运算时间很长,接近TLE边缘 (6300ms)。
# AC
# Time Complexity: O(2^N)
# Slow: 6300ms
from typing import List
class Solution:
def maxDiff(self, l: int, r:int) -> int:
if l == r:
return self.nums[l]
return max(self.nums[l] - self.maxDiff(l + 1, r), self.nums[r] - self.maxDiff(l, r - 1))
def PredictTheWinner(self, nums: List[int]) -> bool:
self.nums = nums
return self.maxDiff(, len(nums) - 1) >=
从调用图也很容易看出是指数级的复杂度
上图中我们有重复计算的节点,例如[1-2]节点被计算了两次。使用 lru_cache 大法,在maxDiff 上仅加了一句,就能以复杂度 和运行时间 43ms AC。
# AC
# Time Complexity: O(N^2)
# Fast: 43ms
from functools import lru_cache
from typing import List
class Solution:
@lru_cache(maxsize=None)
def maxDiff(self, l: int, r:int) -> int:
if l == r:
return self.nums[l]
return max(self.nums[l] - self.maxDiff(l + 1, r), self.nums[r] - self.maxDiff(l, r - 1))
def PredictTheWinner(self, nums: List[int]) -> bool:
self.nums = nums
return self.maxDiff(, len(nums) - 1) >=
动态规划解法调用图可以看出节点 [1-2] 这次没有被计算两次。
Leetcode 464 Can I Win (中等)
类似但稍有难度的题目 Leetcode 464 Can I Win。难点在于使用了位的状态压缩。
在 "100 game" 这个游戏中,两名玩家轮流选择从 1 到 10 的任意整数,累计整数和,先使得累计整数和达到 100 的玩家,即为胜者。
如果我们将游戏规则改为 “玩家不能重复使用整数” 呢?
例如,两个玩家可以轮流从公共整数池中抽取从 1 到 15 的整数(不放回),直到累计整数和 >= 100。
给定一个整数 maxChoosableInteger (整数池中可选择的大数)和另一个整数 desiredTotal(累计和),判断先出手的玩家是否能稳赢(假设两位玩家游戏时都表现佳)?
你可以假设 maxChoosableInteger 不会大于 20, desiredTotal 不会大于 300。
示例:
输入:
maxChoosableInteger = 10
desiredTotal = 11
输出:
false
解释:
无论个玩家选择哪个整数,他都会失败。
个玩家可以选择从 1 到 10 的整数。
如果个玩家选择 1,那么第二个玩家只能选择从 2 到 10 的整数。
第二个玩家可以通过选择整数 10(那么累积和为 11 >= desiredTotal),从而取得胜利.
同样地,个玩家选择任意其他整数,第二个玩家都会赢。
# AC
# Time Complexity: O:(2^m*m), m: maxChoosableInteger
class Solution:
from functools import lru_cache
@lru_cache(maxsize=None)
def recurse(self, status: int, currentTotal: int) -> bool:
for i in range(1, self.maxChoosableInteger + 1):
if not (status >> i & 1):
new_status = 1 << i | status
if currentTotal + i >= self.desiredTotal:
return True
if not self.recurse(new_status, currentTotal + i):
return True
return False
def canIWin(self, maxChoosableInteger: int, desiredTotal: int) -> bool:
self.maxChoosableInteger = maxChoosableInteger
self.desiredTotal = desiredTotal
sum = maxChoosableInteger * (maxChoosableInteger + 1) / 2
if sum < desiredTotal:
return False
return self.recurse(, )
上面的代码算法复杂度为,m是maxChoosableInteger。由于所有状态的数量是,对于每个状态,多会尝试 走法。
Minimax 算法
至此,我们AC了leetcode中的几道零和回合制博弈游戏。事实上,在这个领域有通用的算法:回合制博弈下的minimax。算法背景如下,两个玩家轮流玩,个玩家max的目的是将游戏的效用大化,第二个玩家min则是小化效用。比如,下面的节点表示玩家选取节点后游戏的效用,当两个玩家都能采取优策略,Minimax 算法从底层节点来计算,游戏的结果是终max 玩家会得到-7。
Minimax Python 3伪代码如下。
def minimax(node: Node, depth: int, maximizingPlayer: bool) -> int:
if depth == or is_terminal(node):
return evaluate_terminal(node)
if maximizingPlayer:
value:int = −∞
for child in node:
value = max(value, minimax(child, depth − 1, False))
return value
else: # minimizing player
value := +∞
for child in node:
value = min(value, minimax(child, depth − 1, True))
return value
Minimax: 486 Predict the Winner
我们知道486 Predict the Winner 是有minimax解法的,但如何具体实现,其难点在于如何定义合适的游戏价值或者效用。之前的解法中,我们定义maxDiff(l, r) 来表示当前玩家面临子区间 时能取得的大分差。对于minimax算法,max 玩家要大化游戏价值,min玩家要小化游戏价值。先考虑简单情况即只有一个数x时,若定义max玩家在此局面下得到这个数时游戏价值为 +x,则min玩家为-x,即max玩家得到的所有数为正(),min玩家得到的所有数为负()。至此,max玩家的目标就是 ,min玩家是 。有了的定义和优化目标,代码只需要套一下上面的模版。
# AC
from functools import lru_cache
from typing import List
class Solution:
# max_player: max(A - B)
# min_player: min(A - B)
@lru_cache(maxsize=None)
def minimax(self, l: int, r: int, isMaxPlayer: bool) -> int:
if l == r:
return self.nums[l] * (1 if isMaxPlayer else -1)
if isMaxPlayer:
return max(
self.nums[l] + self.minimax(l + 1, r, not isMaxPlayer),
self.nums[r] + self.minimax(l, r - 1, not isMaxPlayer))
else:
return min(
-self.nums[l] + self.minimax(l + 1, r, not isMaxPlayer),
-self.nums[r] + self.minimax(l, r - 1, not isMaxPlayer))
def PredictTheWinner(self, nums: List[int]) -> bool:
self.nums = nums
v = self.minimax(, len(nums) - 1, True)
return v >=
Minimax: 464 Can I Win
该题目是很典型的此类游戏,即结果为赢输平,但是中间的状态没有直接对应的游戏价值。对于这样的问题,一般定义为,max玩家胜,价值 +1,min玩家胜,价值-1,平则0。下面的AC代码实现了 Minimax 算法。算法中针对两个玩家都有剪枝(没有剪枝无法AC)。具体来说,max玩家一旦在某一节点取得胜利(value=1),就停止继续向下搜索,因为这是他能取得的好分数。同理,min玩家一旦取得-1也直接返回上层节点。这个剪枝可以泛化成 alpha beta剪枝算法。
# AC
class Solution:
from functools import lru_cache
@lru_cache(maxsize=None)
# currentTotal < desiredTotal
def minimax(self, status: int, currentTotal: int, isMaxPlayer: bool) -> int:
import math
if status == self.allUsed:
return # draw: no winner
if isMaxPlayer:
value = -math.inf
for i in range(1, self.maxChoosableInteger + 1):
if not (status >> i & 1):
new_status = 1 << i | status
if currentTotal + i >= self.desiredTotal:
return 1 # shortcut
value = max(value, self.minimax(new_status, currentTotal + i, not isMaxPlayer))
if value == 1:
return 1
return value
else:
value = math.inf
for i in range(1, self.maxChoosableInteger + 1):
if not (status >> i & 1):
new_status = 1 << i | status
if currentTotal + i >= self.desiredTotal:
return -1 # shortcut
value = min(value, self.minimax(new_status, currentTotal + i, not isMaxPlayer))
if value == -1:
return -1
return value
Alpha-Beta 剪枝
在464 Can I Win minimax 算法代码实现中,我们发现有剪枝优化空间。对于每个节点,定义两个值alpha 和 beta,表示从根节点到目前局面时,max玩家保证能取得的小值以及min玩家能保证取得的大值。初始时,根节点alpha = −∞ , beta = +∞,表示游戏终的价值在区间 [−∞, +∞]中。在向下遍历的过程中,子节点先继承父节点的 alpha beta 值进而继承区间 [alpha, beta]。当子节点在向下遍历的时候同步更新alpha 或者 beta,一旦区间[alpha, beta]非法就立即向上返回。举个Wikimedia的例子来进一步说明:
根节点初始时:alpha = −∞, beta = +∞
根节点,左边子节点返回4后:alpha = 4, beta = +∞
根节点,中间子节点返回5后:alpha = 5, beta = +∞
右Min节点(标1节点),初始时:alpha = 5, beta = +∞
右Min节点(标1节点),个子节点返回1后:alpha = 5, beta = 1
此时,右Min节点的alpha, beta形成了区间[5, 1],满足了剪枝条件,因此可以不用计算它的第二个和第三个子节点。如果剩余子节点返回值 > 1,比如2,由于这是个min节点,将会被已经到手的1替换。若其他子节点返回值 < 1,但由于min的父节点有效区间是[5, +∞],已经保证了>=5,小于5的值也会被忽略。
Minimax Python 3伪代码如下def alpha_beta(node: Node, depth: int, α: int, β: int, maximizingPlayer: bool) -> int:
if depth == or is_terminal(node):
return evaluate_terminal(node)
if maximizingPlayer:
value: int = −∞
for child in node:
value = max(value, alphabeta(child, depth − 1, α, β, False))
α = max(α, value)
if α >= β:
break # β cut-off
return value
else:
value: int = +∞
for child in node:
value = min(value, alphabeta(child, depth − 1, α, β, True))
β = min(β, value)
if β <= α:
break # α cut-off
return value
Alpha-Beta Pruning: 486 Predict the Winner
# AC
import math
from functools import lru_cache
from typing import List
class Solution:
def alpha_beta(self, l: int, r: int, curr: int, isMaxPlayer: bool, alpha: int, beta: int) -> int:
if l == r:
return curr + self.nums[l] * (1 if isMaxPlayer else -1)
if isMaxPlayer:
ret = self.alpha_beta(l + 1, r, curr + self.nums[l], not isMaxPlayer, alpha, beta)
alpha = max(alpha, ret)
if alpha >= beta:
return alpha
ret = max(ret, self.alpha_beta(l, r - 1, curr + self.nums[r], not isMaxPlayer, alpha, beta))
return ret
else:
ret = self.alpha_beta(l + 1, r, curr - self.nums[l], not isMaxPlayer, alpha, beta)
beta = min(beta, ret)
if alpha >= beta:
return beta
ret = min(ret, self.alpha_beta(l, r - 1, curr - self.nums[r], not isMaxPlayer, alpha, beta))
return ret
def PredictTheWinner(self, nums: List[int]) -> bool:
self.nums = nums
v = self.alpha_beta(, len(nums) - 1, , True, -math.inf, math.inf)
return v >=
Alpha-Beta Pruning: 464 Can I Win
# AC
class Solution:
from functools import lru_cache
@lru_cache(maxsize=None)
# currentTotal < desiredTotal
def alpha_beta(self, status: int, currentTotal: int, isMaxPlayer: bool, alpha: int, beta: int) -> int:
import math
if status == self.allUsed:
return # draw: no winner
if isMaxPlayer:
value = -math.inf
for i in range(1, self.maxChoosableInteger + 1):
if not (status >> i & 1):
new_status = 1 << i | status
if currentTotal + i >= self.desiredTotal:
return 1 # shortcut
value = max(value, self.alpha_beta(new_status, currentTotal + i, not isMaxPlayer, alpha, beta))
alpha = max(alpha, value)
if alpha >= beta:
return value
return value
else:
value = math.inf
for i in range(1, self.maxChoosableInteger + 1):
if not (status >> i & 1):
new_status = 1 << i | status
if currentTotal + i >= self.desiredTotal:
return -1 # shortcut
value = min(value, self.alpha_beta(new_status, currentTotal + i, not isMaxPlayer, alpha, beta))
beta = min(beta, value)
if alpha >= beta:
return value
return value
C++, Java, Javascript AC 486 Predict the Winner
后介绍一种不同的DP实现:用C++, Java, Javascript 实现自底向上的DP解法来AC leetcode 486,当然其他语言没有Python的lru_cache大法。以下实现中,注意DP解的构建顺序,先解决小规模的问题,并在此基础上计算稍大的问题。值得一提的是,以下的循环写法严格保证了 次循环,但是自顶向下的计划递归可能会少于 次循环。
Java AC Code
// AC
class Solution {
public boolean PredictTheWinner(int[] nums) {
int n = nums.length;
int[][] dp = new int[n][n];
for (int i = ; i < n; i++) {
dp[i][i] = nums[i];
}
for (int l = n - 1; l >= ; l--) {
for (int r = l + 1; r < n; r++) {
dp[l][r] = Math.max(
nums[l] - dp[l + 1][r],
nums[r] - dp[l][r - 1]);
}
}
return dp[][n - 1] >= ;
}
}
C++ AC Code
// AC
class Solution {
public:
bool PredictTheWinner(vector<int>& nums) {
int n = nums.size();
vector<vector<int>> dp(n, vector<int>(n, ));
for (int i = ; i < n; i++) {
dp[i][i] = nums[i];
}
for (int l = n - 1; l >= ; l--) {
for (int r = l + 1; r < n; r++) {
dp[l][r] = max(nums[l] - dp[l + 1][r], nums[r] - dp[l][r - 1]);
}
}
return dp[][n - 1] >= ;
}
};
Javascript AC Code
/**
* @param {number[]} nums
* @return {boolean}
*/
var PredictTheWinner = function(nums) {
const n = nums.length;
const dp = new Array(n).fill().map(() => new Array(n));
for (let i = ; i < n; i++) {
dp[i][i] = nums[i];
}
for (let l = n - 1; l >=; l--) {
for (let r = i + 1; r < n; r++) {
dp[l][r] = Math.max(nums[l] - dp[l + 1][r],nums[r] - dp[l][r - 1]);
}
}
return dp[][n-1] >=;
};
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
相关文章