Flink On K8S终极实现方案
Flink作为新一代的大数据处理引擎,不仅是业内公认的好的流处理引擎,而且具备机器学习等多种强大计算功能,用户只需根据业务逻辑开发一套代码,无论是全量数据还是增量数据,亦或者实时处理,一套方案即可全部解决。K8S是业内流行的容器编排工具,与docker容器技术结合,可以提供比Yarn与Mesos更强大的集群资源管理功能,成为容器云的主要解决方案之一。如果能将两者结合,无疑是双剑合璧,对生产效能有着巨大的提升。本文将介绍目前为止,Flink On K8S的前沿实现方案。
Flink集群架构
如下图所示,Flink集群中一个 JobManger 和若干个TaskManager。由 Client 提交任务给 JobManager,JobManager再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的JVM进程。
Client是提交Job的客户端,可以是运行在任何机器上(与JobManager 环境连通即可),也可以运行在容器中。提交Job后,Client可以结束进程(Streaming的任务),也可以不结束并等待结果返回。
JobManager主要负责调度Job并协调Task做checkpoint。从Client处接收到 Job 和 JAR 包等资源后,会生成优化后的执行计划,并以Task粒度调度到各个TaskManager上去执行。
TaskManager在启动的时候就设置好了槽位数(Slot),每个slot能启动一个Task,Task为线程。从JobManager处接收需要部署的Task,部署启动后,与自己的上游建立 Netty 连接,接收数据并处理。
可以看到Flink的任务调度是多线程模型,并且不同Job/Task混合在一个 TaskManager 进程中。
目前在K8S中执行Flink任务的方式有两种,一种是Standalone,一种是原生模式。
Standalone模式
在K8S中启动Flink集群
Flink on Kubernetes 的架构如图所示,Flink 任务在 Kubernetes 上运行的步骤有:
- 首先往 Kubernetes 集群提交了资源描述文件后,会启动 Master 和 Worker 的 container。
- Master Container 中会启动 Flink Master Process,包含 Flink-Container ResourceManager、JobManager 和 Program Runner。
- Worker Container 会启动 TaskManager,并向负责资源管理的 ResourceManager 进行注册,注册完成之后,由 JobManager 将具体的任务分给 Container,再由 Container 去执行。
- 需要说明的是,Master Container 与Worker Container是用一个镜像启动的,只是启动参数不一样,如下图所示,两个deployment文件的image都是flink:latest。
计算任务可以以Session模式与Per-Job模式运行提交:
- Session模式:先启动一个Flink集群,然后向该集群提交任务,所有任务共用JobManager。任务提交速度快,适合频繁提交运行的短时间任务。
- Per-Job模式:每提交一个任务,单独启动一个集群运行该任务,运行结束集群被删除,资源也被释放。任务启动较慢,适合于长时间运行的大型任务。
Session 模式
在Session模式下,需要先启动一个Flink集群,然后向该集群提交任务,主要步骤为:先将集群配置定义为ConfigMap、然后通过官方资源描述文件分别启动JobManager与一定数量的TaskManager,后在flink客户端向这个启动的Flink集群中提交任务。
定义ConfigMap
对于 JobManager 和 TaskManager 运行过程中需要的一些配置文件,如:flink-conf.yaml、hdfs-site.xml、core-site.xml,可以通过flink-configuration-configmap.yaml文件将它们定义为 ConfigMap 来实现配置的传递和读取。如果使用默认配置,这一步则不需要。
kubectl create -f flink-configuration-configmap.yaml
相关文章