昨天聊了下SQLSERVER的spinlock,当时我认为spinlock是与Oracle LATCH相对应的结构,事实上碎片化的阅读会带来一些知识掌握的不准确。Oracle的LATCH是通过spin来实现锁的获取的,spin是LATCH获取轻量级锁的一种方式。而在SQLSERVER中,LATCH和spinlock被设计成两种轻量级锁,分别用于不同的场景。Oracle有shared pool,library cache等结构,可以用shared pool闩锁来保护整个共享池,共享池中新增的一些乱七八糟的数据结构可以通过shared pool闩锁以及mutex来实现串行化访问保护。SQLSERVER中并无此类机制,因此对于一些重度访问的内存结构,设计了LATCH来保护,而其他的一些数据结构,使用spinlock。在SQLSERVER中,总是使用spinlock来保护那些访问十分快速的内存结构。LATCH是 SQL Server 的SQL引擎用来保证内存结构的一致性的轻量级原子操作用来保护索引、数据页和内部结构等结构,例如 B 树中的非叶页。LATCH仅存在于SQL引擎内部。SQL Server 使用缓冲LATCH来保护缓冲池中的页面,并使用 I/O LATCH来保护尚未加载到缓冲池中的页面。每当向 SQL Server 缓冲池中的页面写入或读取数据时,工作线程必须首先获取该页面的缓冲LATCH。有多种缓冲LATCH类型可用于访问缓冲池中的页面,包括独占LATCH (PAGELATCH_EX) 和共享LATCH(PAGELATCH_SH)。当 SQL Server访问一个尚未加载到缓冲池中的页面时,将通过一个异步 I/O操作将该页面加载到缓冲池中。如果 SQL Server 需要等待 I/O 子系统响应,它将根据请求类型等待独占 (PAGEIOLATCH_EX) 或共享 (PAGEIOLATCH_SH) I/O LATCH;这样做是为了防止另一个工作线程使用不兼容的LATCH将同一页面加载到缓冲池中。LATCH还用于保护对缓冲池页面以外的内部存储器结构的访问;这些被称为非缓冲LATCH。PAGELATCH的争用在多 CPU 系统十分常见。当多个线程同时尝试获取相同内存结构的不兼容LATCH时,就会发生LATCH争用。闩锁是一种内部并发控制机制,SQL 引擎会自动确定何时使用它们。因为闩锁的行为是确定性的,数据库SCHEMA的设计,表、索引等的设计会影响闩锁争用。非缓存页的闩锁名称为LATCH_XX,其中“_XX”后缀表示了闩锁的模式(PAGEIOLATCH/PAGELATCH也使用后缀表示模式)。SQL Server 的闩锁模式可以总结如下:lKP——保持LATCH,确保引用的结构不会被破坏。当线程想要查看缓冲区结构时使用。因为 KP LATCH兼容除销毁(DT)之外的所有LATCH,因此 KP 闩锁被认为是“轻量级”的,这意味着使用它时对性能的影响小。由于 KP 闩锁与 DT 闩锁不兼容,它会阻止任何其他线程破坏引用的结构。KP 闩锁将防止它引用的结构被lazywriter 进程破坏(脏块写盘并释放缓冲);
lSH -- 共享闩锁,需要读取引用的结构(例如读取数据页)。多个线程可以同时访问共享闩锁下的资源以进行读取。
lUP——更新闩锁,与 SH(共享闩锁)和 KP 兼容,但不兼容其他闩锁,因此不允许 EX 闩锁写入引用的结构。
lEX——独占闩锁,阻止其他线程写入或读取引用的结构。一个使用示例是修改页面内容以保护页面损坏。
lDT -- 销毁闩锁,必须在销毁引用结构的内容之前获取。例如,lazywriter 进程必须获取一个 DT 闩锁以释放一个干净的页面,然后再将其添加到可供其他线程使用的空闲缓冲区列表中。
上面的描述中关于闩锁兼容性的描述,可以用上表来表示。如果我们看到一个闩锁,可以通过”_”之后的后缀来区分其模式。比如PAGEIOLATCH_EX是一个独享的PAGEIOLATCH,LATCH_DT是一个非缓冲区保护的销毁闩锁。和Oracle的子闩锁类似,SQLSERVER也存在类似的结构,称为superlatch或者sublatch。目的是使用多个子闩锁来提高闩锁的并发性能。SQLSERVER使用多线程结构,并采用缓冲区动态扩展的方式。因此superlatch机制与NUMA架构做了一些优化,使之更好的适应NUMA。随着基于 NUMA 的多路/多核系统的出现越来越多,SQL Server 2005开始引入了 SuperLatches,也称为子闩锁,superlatch仅在具有 32 个或更多逻辑处理器的系统上自动启用。Superlatch 提高了 SQL 引擎在高并发 OLTP 工作负载中某些场景的效率;例如,当某些页面具有重度只读共享 (SH) 访问模式,但很少写入。具有这种访问模式的页面的一个示例是 B 树(即索引)根页面;SQL 引擎要求在 B 树中的任何级别发生页面拆分时,在根页面上保留一个共享闩锁。在插入繁重和高并发的 OLTP 工作负载中,页面拆分的数量将随着吞吐量的增加而大幅增加,这会降低性能。SuperLatches 可以提高访问共享页面的性能,其中多个并发运行的工作线程需要 SH 闩锁。为此,SQL Server 引擎会将此类页面上的闩锁动态提升为 SuperLatch。SuperLatch 将单个闩锁划分为一组子闩锁结构,每个 CPU 内核分配一个子闩锁,因此主闩锁成为代理重定向器,只读闩锁不需要全局状态同步。这样做时,访问某个内存总是分配给特定 CPU 的worker线程只需要获取分配给本地调度程序的共享 (SH) 子闩锁。在为大型服务器设计的高吞吐量系统上,必定会出现高并发的闩锁争用,在此类系统中存在闩锁争用是十分正常的现象。但是当闩锁争用和闩锁等待类型等待时间大到足以降低 CPU 利用率的情况下,系统的整体吞吐量会严重下降。识别和识别闩锁争用的迹象很重要,所以让我们必须有能力来分析这种情况。SQL Server 闩锁的预期行为(与每秒事务数相关)是每秒事务数将随着平均 SQL Server 闩锁等待时间的增加而增加,其本身以缓慢的速度增加。如果数据库并发增长的趋势与闩锁等待的趋势十分接近,那么闩锁争用并没有产生额外的负面影响。如果闩锁等待幅度远远超过数据库负载的增长,那么就说明闩锁出现了严重的争用。这个判断原则在大多数情况下是有效的。我已经比较长时间没有仔细阅读数据库厂商官方的白皮书了,通过这两天的学习,我学到了一个分析数据的方法。实际上有些指标之间是存在较为同步的关联关系的,通过上升或者下降的幅度(可以通过统计学方法计算出一个可评估的度量)之间的对比,可以发现一些系统的性能问题。以前我们做了一个指标关联性分析工具,用于发现数据库某个指标异常可能存在的问题。实际上用这种更为简单的算法,也可以发现系统中存在的一些背离预期行为的场景,并用于告警。可能有朋友有些疑问,高并发必然有LATCH争用,必然有spinlock问题,为什么还要去这么较真的分析其原理呢?分析闩锁与spinlock的一些原理的问题并不是仅仅为了分析原理,而是要更好的用到诊断中。通过理解这些内部原理,我们可以更好的了解SQL SERVER的缓存区、IO、SQL引擎的工作原理,掌握SQL SERVER复杂问题的分析诊断与问题溯源的能力。通过这几天的SQL SERVER内部原理的一些零散的学习,在我的脑子里SQL SERVER与Oracle的差别越来越清晰。分析问题的时候,既可以运用Oracle的一些已知原理去分析SQL SERVER的问题,又可以不僵化的刻舟求剑。今天早上我重新梳理了一下SQL SERVER IO问题分析的诊断思路,为这个思维导图增加了一些细节。利用上面这张图去分析SQL SERVER的问题,基本上能够覆盖大部分常见问题了。我们将把这个知识图谱建立在D-SMART中。利用自动化工具来自动分析SQL SERVER的IO性能问题。实际上大多数知识图谱都是通过这样的方法构建出来的。有一些是基于专家经验,有一些是基于官方文档,有一些是基于生产环境中遇到的案例与实践。本文来源https://www.modb.pro/db/507881