k8s系列13-calico部署BGP模式的高可用k8s集群

2023-02-14 00:00:00 集群 节点 部署 配置 安装

以下文章来源于公众号-TinyChen ,作者TinyChen  

本文主要在centos7系统上基于containerdv3.24.5版本的calico组件部署v1.26.0版本的堆叠ETCD高可用k8s原生集群,在LoadBalancer上选择了PureLBcalico结合bird实现BGP路由可达的K8S集群部署。

此前写的一些关于k8s基础知识和集群搭建的一些方案[1],有需要的同学可以看一下。

1、准备工作

1.1 集群信息

机器均为16C16G的虚拟机,硬盘为100G。

IP Hostname
10.31.90.0 k8s-calico-apiserver.tinychen.io
10.31.90.1 k8s-calico-master-10-31-90-1.tinychen.io
10.31.90.2 k8s-calico-master-10-31-90-2.tinychen.io
10.31.90.3 k8s-calico-master-10-31-90-3.tinychen.io
10.31.90.4 k8s-calico-worker-10-31-90-4.tinychen.io
10.31.90.5 k8s-calico-worker-10-31-90-5.tinychen.io
10.31.90.6 k8s-calico-worker-10-31-90-6.tinychen.io
10.33.0.0/17 podSubnet
10.33.128.0/18 serviceSubnet
10.33.192.0/18 LoadBalancerSubnet

1.2 检查mac和product_uuid

同一个k8s集群内的所有节点需要确保mac地址和product_uuid均,开始集群初始化之前需要检查相关信息

# 检查mac地址
ip link 
ifconfig -a

# 检查product_uuid
sudo cat /sys/class/dmi/id/product_uuid

1.3 配置ssh免密登录(可选)

如果k8s集群的节点有多个网卡,确保每个节点能通过正确的网卡互联访问

# 在root用户下面生成一个公用的key,并配置可以使用该key免密登录
su root
ssh-keygen
cd /root/.ssh/
cat id_rsa.pub >> authorized_keys
chmod 600 authorized_keys


cat >> ~/.ssh/config <<EOF
Host k8s-calico-master-10-31-90-1
    HostName 10.31.90.1
    User root
    Port 22
    IdentityFile ~/.ssh/id_rsa

Host k8s-calico-master-10-31-90-2
    HostName 10.31.90.2
    User root
    Port 22
    IdentityFile ~/.ssh/id_rsa

Host k8s-calico-master-10-31-90-3
    HostName 10.31.90.3
    User root
    Port 22
    IdentityFile ~/.ssh/id_rsa

Host k8s-calico-worker-10-31-90-4
    HostName 10.31.90.4
    User root
    Port 22
    IdentityFile ~/.ssh/id_rsa

Host k8s-calico-worker-10-31-90-5
    HostName 10.31.90.5
    User root
    Port 22
    IdentityFile ~/.ssh/id_rsa

Host k8s-calico-worker-10-31-90-6
    HostName 10.31.90.6
    User root
    Port 22
    IdentityFile ~/.ssh/id_rsa
EOF

1.4 修改hosts文件

cat >> /etc/hosts <<EOF
1.31.90. k8s-calico-apiserver k8s-calico-apiserver.tinychen.io
1.31.90.1 k8s-calico-master-10-31-90-1 k8s-calico-master-10-31-90-1.tinychen.io
1.31.90.2 k8s-calico-master-10-31-90-2 k8s-calico-master-10-31-90-2.tinychen.io
1.31.90.3 k8s-calico-master-10-31-90-3 k8s-calico-master-10-31-90-3.tinychen.io
1.31.90.4 k8s-calico-worker-10-31-90-4 k8s-calico-worker-10-31-90-4.tinychen.io
1.31.90.5 k8s-calico-worker-10-31-90-5 k8s-calico-worker-10-31-90-5.tinychen.io
1.31.90.6 k8s-calico-worker-10-31-90-6 k8s-calico-worker-10-31-90-6.tinychen.io
EOF

1.5 关闭swap内存

# 使用命令直接关闭swap内存
swapoff -a
# 修改fstab文件禁止开机自动挂载swap分区
sed -'/swap / s/^\(.*\)$/#\1/g' /etc/fstab

1.6 配置时间同步

这里可以根据自己的习惯选择ntp或者是chrony同步均可,同步的时间源服务器可以选择阿里云的ntp1.aliyun.com或者是国家时间中心的ntp.ntsc.ac.cn

使用ntp同步

# 使用yum安装ntpdate工具
yum install ntpdate -y

# 使用国家时间中心的源同步时间
ntpdate ntp.ntsc.ac.cn

# 后查看一下时间
hwclock

使用chrony同步

# 使用yum安装chrony
yum install chrony -y

# 设置开机启动并开启chony并查看运行状态
systemctl enable chronyd.service
systemctl start chronyd.service
systemctl status chronyd.service

# 当然也可以自定义时间服务器
vim /etc/chrony.conf

# 修改前
grep server /etc/chrony.conf
# Use public servers from the pool.ntp.org project.
server .centos.pool.ntp.org iburst
server 1.centos.pool.ntp.org iburst
server 2.centos.pool.ntp.org iburst
server 3.centos.pool.ntp.org iburst

# 修改后
grep server /etc/chrony.conf
# Use public servers from the pool.ntp.org project.
server ntp.ntsc.ac.cn iburst

# 重启服务使配置文件生效
systemctl restart chronyd.service

# 查看chrony的ntp服务器状态
chronyc sourcestats -v
chronyc sources -v

1.7 关闭selinux

# 使用命令直接关闭
setenforce 

# 也可以直接修改/etc/selinux/config文件
sed -'s/^SELINUX=enforcing$/SELINUX=disabled/' /etc/selinux/config

1.8 配置防火墙

k8s集群之间通信和服务暴露需要使用较多端口,为了方便,直接禁用防火墙

# centos7使用systemctl禁用默认的firewalld服务
systemctl disable firewalld.service

1.9 配置netfilter参数

这里主要是需要配置内核加载br_netfilteriptables放行ipv6ipv4的流量,确保集群内的容器能够正常通信。

cat <<EOF | sudo tee /etc/modules-load.d/k8s.conf
br_netfilter
EOF


cat <<EOF | sudo tee /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
EOF

sudo sysctl --system

1.10 配置IPVS

IPVS是专门设计用来应对负载均衡场景的组件,kube-proxy 中的 IPVS 实现[2]通过减少对 iptables 的使用来增加可扩展性。在 iptables 输入链中不使用 PREROUTING,而是创建一个假的接口,叫做 kube-ipvs0,当k8s集群中的负载均衡配置变多的时候,IPVS能实现比iptables更高效的转发性能。

注意在4.19之后的内核版本中使用nf_conntrack模块来替换了原有的nf_conntrack_ipv4模块

(Notes: use nf_conntrack instead of nf_conntrack_ipv4 for Linux kernel 4.19 and later)

# 在使用ipvs模式之前确保安装了ipset和ipvsadm
sudo yum install ipset ipvsadm -y

# 手动加载ipvs相关模块
modprobe -- ip_vs
modprobe -- ip_vs_rr
modprobe -- ip_vs_wrr
modprobe -- ip_vs_sh
modprobe -- nf_conntrack

# 配置开机自动加载ipvs相关模块
cat <<EOF | sudo tee /etc/modules-load.d/ipvs.conf
ip_vs
ip_vs_rr
ip_vs_wrr
ip_vs_sh
nf_conntrack
EOF



$ lsmod | grep -e ip_vs -e nf_conntrack
nf_conntrack_netlink    49152  
nfnetlink              20480  2 nf_conntrack_netlink
ip_vs_sh               16384  
ip_vs_wrr              16384  
ip_vs_rr               16384  
ip_vs                 159744  6 ip_vs_rr,ip_vs_sh,ip_vs_wrr
nf_conntrack          159744  5 xt_conntrack,nf_nat,nf_conntrack_netlink,xt_MASQUERADE,ip_vs
nf_defrag_ipv4         16384  1 nf_conntrack
nf_defrag_ipv6         24576  2 nf_conntrack,ip_vs
libcrc32c              16384  4 nf_conntrack,nf_nat,xfs,ip_vs
cut -f1 -" "  /proc/modules | grep -e ip_vs -e nf_conntrack
nf_conntrack_netlink
ip_vs_sh
ip_vs_wrr
ip_vs_rr
ip_vs
nf_conntrack

2、安装container runtime

2.1 安装containerd

详细的官方文档可以参考这里[3],由于在刚发布的1.24版本中移除了docker-shim,因此安装的版本≥1.24的时候需要注意容器运行时的选择。这里我们安装的版本为新的1.26,因此我们不能继续使用docker,这里我们将其换为containerd[4]

修改Linux内核参数

# 首先生成配置文件确保配置持久化
cat <<EOF | sudo tee /etc/modules-load.d/containerd.conf
overlay
br_netfilter
EOF


sudo modprobe overlay
sudo modprobe br_netfilter

# Setup required sysctl params, these persist across reboots.
cat <<EOF | sudo tee /etc/sysctl.d/99-kubernetes-cri.conf
net.bridge.bridge-nf-call-iptables  = 1
net.ipv4.ip_forward                 = 1
net.bridge.bridge-nf-call-ip6tables = 1
EOF


# Apply sysctl params without reboot
sudo sysctl --system

安装containerd

centos7比较方便的部署方式是利用已有的yum源进行安装,这里我们可以使用docker官方的yum源来安装containerd

# 导入docker官方的yum源
sudo yum install -y yum-utils device-mapper-persistent-data lvm2

sudo yum-config-manager --add-repo  https://download.docker.com/linux/centos/docker-ce.repo

# 查看yum源中存在的各个版本的containerd.io
yum list containerd.io --showduplicates | sort -r

# 直接安装新版本的containerd.io
yum install containerd.io -y

# 启动containerd
sudo systemctl start containerd

# 后我们还要设置一下开机启动
sudo systemctl enable --now containerd

关于CRI

官方表示,对于k8s来说,不需要安装cri-containerd,并且该功能会在后面的2.0版本中废弃。

FAQ: For Kubernetes, do I need to download cri-containerd-(cni-)<VERSION>-<OS-<ARCH>.tar.gz too?

Answer: No.

As the Kubernetes CRI feature has been already included in containerd-<VERSION>-<OS>-<ARCH>.tar.gz, you do not need to download the cri-containerd-.... archives to use CRI.

The cri-containerd-... archives are deprecated[5], do not work on old Linux distributions, and will be removed in containerd 2.0.

安装cni-plugins

使用yum源安装的方式会把runc安装好,但是并不会安装cni-plugins,因此这部分还是需要我们自行安装。

The containerd.io package contains runc too, but does not contain CNI plugins.

我们直接在github上面[6]找到系统对应的架构版本,这里为amd64,然后解压即可。

# Download the cni-plugins-<OS>-<ARCH>-<VERSION>.tgz archive from https://github.com/containernetworking/plugins/releases , verify its sha256sum, and extract it under /opt/cni/bin:

# 下载源文件和sha512文件并校验
$ wget https://github.com/containernetworking/plugins/releases/download/v1.1.1/cni-plugins-linux-amd64-v1.1.1.tgz
$ wget https://github.com/containernetworking/plugins/releases/download/v1.1.1/cni-plugins-linux-amd64-v1.1.1.tgz.sha512
sha512sum -c cni-plugins-linux-amd64-v1.1.1.tgz.sha512

# 创建目录并解压
mkdir -p /opt/cni/bin
$ tar Cxzvf /opt/cni/bin cni-plugins-linux-amd64-v1.1.1.tgz

2.2 配置cgroup drivers

CentOS7使用的是systemd来初始化系统并管理进程,初始化进程会生成并使用一个 root 控制组 (cgroup), 并充当 cgroup 管理器。 Systemd 与 cgroup 集成紧密,并将为每个 systemd 单元分配一个 cgroup。 我们也可以配置容器运行时和 kubelet 使用 cgroupfs。 连同 systemd 一起使用 cgroupfs 意味着将有两个不同的 cgroup 管理器。而当一个系统中同时存在cgroupfs和systemd两者时,容易变得不稳定,因此好更改设置,令容器运行时和 kubelet 使用 systemd 作为 cgroup 驱动,以此使系统更为稳定。 对于containerd, 需要设置配置文件/etc/containerd/config.toml中的 SystemdCgroup 参数。

参考k8s官方的说明文档:

https://kubernetes.io/docs/setup/production-environment/container-runtimes/#containerd-systemd

[plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc]
  ...
  [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.runc.options]
    SystemdCgroup = true

接下来我们开始配置containerd的cgroup driver

# 查看默认的配置文件,我们可以看到是没有启用systemd
$ containerd config default | grep SystemdCgroup
            SystemdCgroup = false
            
# 使用yum安装的containerd的配置文件非常简单
cat /etc/containerd/config.toml | egrep -"^#|^$"
disabled_plugins = ["cri"]

# 导入一个完整版的默认配置文件模板为config.toml
mv /etc/containerd/config.toml /etc/containerd/config.toml.origin
$ containerd config default > /etc/containerd/config.toml
# 修改SystemdCgroup参数并重启
$ sed -'s/SystemdCgroup = false/SystemdCgroup = true/g' /etc/containerd/config.toml
$ systemctl restart containerd
# 重启之后我们再检查配置就会发现已经启用了SystemdCgroup
$ containerd config dump | grep SystemdCgroup
            SystemdCgroup = true

# 查看containerd状态的时候我们可以看到cni相关的报错
# 这是因为我们先安装了cni-plugins但是还没有安装k8s的cni插件
# 属于正常情况
$ systemctl status containerd -l
May 12 09:57:31 tiny-kubeproxy-free-master-18-1.k8s.tcinternal containerd[5758]: time="2022-05-12T09:57:31.100285056+08:00" level=error msg="failed to load cni during init, please check CRI plugin status before setting up network for pods" error="cni config load failed: no network config found in /etc/cni/net.d: cni plugin not initialized: failed to load cni config"

2.3 关于kubelet的cgroup driver

k8s官方有详细的文档[7]介绍了如何设置kubelet的cgroup driver,需要特别注意的是,在1.22版本开始,如果没有手动设置kubelet的cgroup driver,那么默认会设置为systemd

Note: In v1.22, if the user is not setting the cgroupDriver field under KubeletConfigurationkubeadm will default it to systemd.

一个比较简单的指定kubelet的cgroup driver的方法就是在kubeadm-config.yaml加入cgroupDriver字段

# kubeadm-config.yaml
kind: ClusterConfiguration
apiVersion: kubeadm.k8s.io/v1beta3
kubernetesVersion: v1.21.0
---
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
cgroupDriver: systemd

我们可以直接查看configmaps来查看初始化之后集群的kubeadm-config配置。

$ kubectl describe configmaps kubeadm-config -n kube-system
Name:         kubeadm-config
Namespace:    kube-system
Labels:       <none>
Annotations:  <none>

Data
====
ClusterConfiguration:
----
apiServer:
  extraArgs:
    authorization-mode: Node,RBAC
  timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta3
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes
controllerManager: {}
dns: {}
etcd:
  local:
    dataDir: /var/lib/etcd
imageRepository: registry.aliyuncs.com/google_containers
kind: ClusterConfiguration
kubernetesVersion: v1.23.6
networking:
  dnsDomain: cali-cluster.tclocal
  serviceSubnet: 10.88.0.0/18
scheduler: {}


BinaryData
====

Events:  <none>

当然因为我们需要安装的版本高于1.22.0并且使用的就是systemd,因此可以不用再重复配置。

3、安装kube三件套

对应的官方文档可以参考这里

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/#installing-kubeadm-kubelet-and-kubectl

kube三件套就是kubeadmkubelet 和 kubectl,三者的具体功能和作用如下:

  • • kubeadm:用来初始化集群的指令。

  • • kubelet:在集群中的每个节点上用来启动 Pod 和容器等。

  • • kubectl:用来与集群通信的命令行工具。

需要注意的是:

  • • kubeadm不会帮助我们管理kubeletkubectl,其他两者也是一样的,也就是说这三者是相互独立的,并不存在谁管理谁的情况;

  • • kubelet的版本必须小于等于API-server的版本,否则容易出现兼容性的问题;

  • • kubectl并不是集群中的每个节点都需要安装,也并不是一定要安装在集群中的节点,可以单独安装在自己本地的机器环境上面,然后配合kubeconfig文件即可使用kubectl命令来远程管理对应的k8s集群;

CentOS7的安装比较简单,我们直接使用官方提供的yum源即可。需要注意的是这里需要设置selinux的状态,但是前面我们已经关闭了selinux,因此这里略过这步。

# 直接导入谷歌官方的yum源
cat <<EOF | sudo tee /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://packages.cloud.google.com/yum/repos/kubernetes-el7-\$basearch
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://packages.cloud.google.com/yum/doc/yum-key.gpg https://packages.cloud.google.com/yum/doc/rpm-package-key.gpg
exclude=kubelet kubeadm kubectl
EOF


# 当然如果连不上谷歌的源,可以考虑使用国内的阿里镜像源
cat <<EOF > /etc/yum.repos.d/kubernetes.repo
[kubernetes]
name=Kubernetes
baseurl=https://mirrors.aliyun.com/kubernetes/yum/repos/kubernetes-el7-x86_64/
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://mirrors.aliyun.com/kubernetes/yum/doc/yum-key.gpg https://mirrors.aliyun.com/kubernetes/yum/doc/rpm-package-key.gpg
EOF



# 接下来直接安装三件套即可
sudo yum install -y kubelet kubeadm kubectl --disableexcludes=kubernetes

# 如果网络环境不好出现gpgcheck验证失败导致无法正常读取yum源,可以考虑关闭该yum源的repo_gpgcheck
sed -'s/repo_gpgcheck=1/repo_gpgcheck=0/g' /etc/yum.repos.d/kubernetes.repo
# 或者在安装的时候禁用gpgcheck
sudo yum install -y kubelet kubeadm kubectl --nogpgcheck --disableexcludes=kubernetes

# 如果想要安装特定版本,可以使用这个命令查看相关版本的信息
sudo yum list --nogpgcheck kubelet kubeadm kubectl --showduplicates --disableexcludes=kubernetes


# 安装完成后配置开机自启kubelet
sudo systemctl enable --now kubelet

4、初始化集群

4.0 etcd高可用

etcd高可用架构参考这篇官方文档[8],主要可以分为堆叠etcd方案和外置etcd方案,两者的区别就是etcd是否部署在apiserver所在的node机器上面,这里我们主要使用的是堆叠etcd部署方案。

4.1 apiserver高可用

apisever高可用配置参考这篇官方文档[9]。目前apiserver的高可用比较主流的官方推荐方案[10]是使用keepalived和haproxy,由于centos7自带的版本较旧,重新编译又过于麻烦,因此我们可以参考官方给出的静态pod的部署方式[11],提前将相关的配置文件放置到/etc/kubernetes/manifests目录下即可(需要提前手动创建好目录)。官方表示对于我们这种堆叠部署控制面master节点和etcd的方式而言这是一种优雅的解决方案。

This is an elegant solution, in particular with the setup described under Stacked control plane and etcd nodes[12].

首先我们需要准备好三台master节点上面的keepalived配置文件和haproxy配置文件:

! /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
    router_id LVS_DEVEL
}
vrrp_script check_apiserver {
  script "/etc/keepalived/check_apiserver.sh"
  interval 3
  weight -2
  fall 10
  rise 2
}

vrrp_instance VI_1 {
    state ${STATE}
    interface ${INTERFACE}
    virtual_router_id ${ROUTER_ID}
    priority ${PRIORITY}
    authentication {
        auth_type PASS
        auth_pass ${AUTH_PASS}
    }
    virtual_ipaddress {
        ${APISERVER_VIP}
    }
    track_script {
        check_apiserver
    }
}

实际上我们需要区分三台控制面节点的状态

! /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
    router_id CALICO_MASTER_90_1
}
vrrp_script check_apiserver {
  script "/etc/keepalived/check_apiserver.sh"
  interval 3
  weight -2
  fall 10
  rise 2
}

vrrp_instance calico_ha_apiserver_10_31_90_0 {
    state MASTER
    interface eth0
    virtual_router_id 90
    priority 100
    authentication {
        auth_type PASS
        auth_pass pass@77
    }
    virtual_ipaddress {
        10.31.90.0
    }
    track_script {
        check_apiserver
    }
}
! /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
    router_id CALICO_MASTER_90_2
}
vrrp_script check_apiserver {
  script "/etc/keepalived/check_apiserver.sh"
  interval 3
  weight -2
  fall 10
  rise 2
}

vrrp_instance calico_ha_apiserver_10_31_90_0 {
    state BACKUP
    interface eth0
    virtual_router_id 90
    priority 99
    authentication {
        auth_type PASS
        auth_pass pass@77
    }
    virtual_ipaddress {
        10.31.90.0
    }
    track_script {
        check_apiserver
    }
}
! /etc/keepalived/keepalived.conf
! Configuration File for keepalived
global_defs {
    router_id CALICO_MASTER_90_3
}
vrrp_script check_apiserver {
  script "/etc/keepalived/check_apiserver.sh"
  interval 3
  weight -2
  fall 10
  rise 2
}

vrrp_instance calico_ha_apiserver_10_31_90_0 {
    state BACKUP
    interface eth0
    virtual_router_id 90
    priority 98
    authentication {
        auth_type PASS
        auth_pass pass@77
    }
    virtual_ipaddress {
        10.31.90.0
    }
    track_script {
        check_apiserver
    }
}

这是haproxy的配置文件模板:

# /etc/haproxy/haproxy.cfg
#---------------------------------------------------------------------
# Global settings
#---------------------------------------------------------------------
global
    log /dev/log local0
    log /dev/log local1 notice
    daemon

#---------------------------------------------------------------------
# common defaults that all the 'listen' and 'backend' sections will
# use if not designated in their block
#---------------------------------------------------------------------
defaults
    mode                    http
    log                     global
    option                  httplog
    option                  dontlognull
    option http-server-close
    option forwardfor       except 127.0.0.0/8
    option                  redispatch
    retries                 1
    timeout http-request    10s
    timeout queue           20s
    timeout connect         5s
    timeout client          20s
    timeout server          20s
    timeout http-keep-alive 10s
    timeout check           10s

#---------------------------------------------------------------------
# apiserver frontend which proxys to the control plane nodes
#---------------------------------------------------------------------
frontend apiserver
    bind *:${APISERVER_DEST_PORT}
    mode tcp
    option tcplog
    default_backend apiserver

#---------------------------------------------------------------------
round robin balancing for apiserver
#---------------------------------------------------------------------
backend apiserver
    option httpchk GET /healthz
    http-check expect status 200
    mode tcp
    option ssl-hello-chk
    balance     roundrobin
        server ${HOST1_ID} ${HOST1_ADDRESS}:${APISERVER_SRC_PORT} check
        # [...]

这是keepalived的检测脚本,注意这里的${APISERVER_VIP}${APISERVER_DEST_PORT}要替换为集群的实际VIP和端口

#!/bin/sh
APISERVER_VIP="10.31.90.0"
APISERVER_DEST_PORT="8443"

errorExit() {
    echo "*** $*" 1>&2
    exit 1
}

curl --silent --max-time 2 --insecure https://localhost:${APISERVER_DEST_PORT}/ -o /dev/null || errorExit "Error GET https://localhost:${APISERVER_DEST_PORT}/"
if ip addr | grep -${APISERVER_VIP}; then
    curl --silent --max-time 2 --insecure https://${APISERVER_VIP}:${APISERVER_DEST_PORT}/ -o /dev/null || errorExit "Error GET https://${APISERVER_VIP}:${APISERVER_DEST_PORT}/"
fi

这是keepalived的部署文件/etc/kubernetes/manifests/keepalived.yaml,注意这里的配置文件路径要和上面的对应一致。

apiVersion: v1
kind: Pod
metadata:
  creationTimestamp: null
  name: keepalived
  namespace: kube-system
spec:
  containers:
  - image: osixia/keepalived:2.0.17
    name: keepalived
    resources: {}
    securityContext:
      capabilities:
        add:
        - NET_ADMIN
        - NET_BROADCAST
        - NET_RAW
    volumeMounts:
    - mountPath: /usr/local/etc/keepalived/keepalived.conf
      name: config
    - mountPath: /etc/keepalived/check_apiserver.sh
      name: check
  hostNetwork: true
  volumes:
  - hostPath:
      path: /etc/keepalived/keepalived.conf
    name: config
  - hostPath:
      path: /etc/keepalived/check_apiserver.sh
    name: check
status: {}

这是haproxy的部署文件/etc/kubernetes/manifests/haproxy.yaml,注意这里的配置文件路径要和上面的对应一致,且${APISERVER_DEST_PORT}要换成我们对应的apiserver的端口,这里我们改为8443,避免和原有的6443端口冲突

apiVersion: v1
kind: Pod
metadata:
  name: haproxy
  namespace: kube-system
spec:
  containers:
  - image: haproxy:2.1.4
    name: haproxy
    livenessProbe:
      failureThreshold: 8
      httpGet:
        host: localhost
        path: /healthz
        #port: ${APISERVER_DEST_PORT}
        port: 8443
        scheme: HTTPS
    volumeMounts:
    - mountPath: /usr/local/etc/haproxy/haproxy.cfg
      name: haproxyconf
      readOnly: true
  hostNetwork: true
  volumes:
  - hostPath:
      path: /etc/haproxy/haproxy.cfg
      type: FileOrCreate
    name: haproxyconf
status: {}

4.2 编写配置文件

在集群中所有节点都执行完上面的操作之后,我们就可以开始创建k8s集群了。因为我们这次需要进行高可用部署,所以初始化的时候先挑任意一台master控制面节点进行操作即可。

# 我们先使用kubeadm命令查看一下主要的几个镜像版本
$ kubeadm config images list
registry.k8s.io/kube-apiserver:v1.26.0
registry.k8s.io/kube-controller-manager:v1.26.0
registry.k8s.io/kube-scheduler:v1.26.0
registry.k8s.io/kube-proxy:v1.26.0
registry.k8s.io/pause:3.9
registry.k8s.io/etcd:3.5.6-
registry.k8s.io/coredns/coredns:v1.9.3

# 为了方便编辑和管理,我们还是把初始化参数导出成配置文件
$ kubeadm config print init-defaults > kubeadm-calico-ha.conf
  • • 考虑到大多数情况下国内的网络无法使用谷歌的镜像源(1.25版本开始从k8s.gcr.io换为registry.k8s.io),我们可以直接在配置文件中修改imageRepository参数为阿里的镜像源registry.aliyuncs.com/google_containers

  • • kubernetesVersion字段用来指定我们要安装的k8s版本

  • • localAPIEndpoint参数需要修改为我们的master节点的IP和端口,初始化之后的k8s集群的apiserver地址就是这个

  • • criSocket从1.24.0版本开始已经默认变成了containerd

  • • podSubnetserviceSubnetdnsDomain两个参数默认情况下可以不用修改,这里我按照自己的需求进行了变更

  • • nodeRegistration里面的name参数修改为对应master节点的hostname

  • • controlPlaneEndpoint参数配置的才是我们前面配置的集群高可用apiserver的地址

  • • 新增配置块使用ipvs,具体可以参考官方文档[13]

apiVersion: kubeadm.k8s.io/v1beta3
bootstrapTokens:
- groups:
  - system:bootstrappers:kubeadm:default-node-token
  token: abcdef.0123456789abcdef
  ttl: 24h0m0s
  usages:
  - signing
  - authentication
kind: InitConfiguration
localAPIEndpoint:
  advertiseAddress: 10.31.90.1
  bindPort: 6443
nodeRegistration:
  criSocket: unix:///var/run/containerd/containerd.sock
  imagePullPolicy: IfNotPresent
  name: k8s-calico-master-10-31-90-1.tinychen.io
  taints: null
---
apiServer:
  timeoutForControlPlane: 4m0s
apiVersion: kubeadm.k8s.io/v1beta3
certificatesDir: /etc/kubernetes/pki
clusterName: kubernetes
controllerManager: {}
dns: {}
etcd:
  local:
    dataDir: /var/lib/etcd
imageRepository: registry.aliyuncs.com/google_containers
kind: ClusterConfiguration
kubernetesVersion: 1.26.
controlPlaneEndpoint: "k8s-calico-apiserver.tinychen.io:8443"
networking:
  dnsDomain: cali-cluster.tclocal
  serviceSubnet: 10.33.128.0/18
  podSubnet: 10.33../17
scheduler: {}
---
apiVersion: kubeproxy.config.k8s.io/v1alpha1
kind: KubeProxyConfiguration
mode: ipvs

4.3 初始化集群

此时我们再查看对应的配置文件中的镜像版本,就会发现已经变成了对应阿里云镜像源的版本

# 查看一下对应的镜像版本,确定配置文件是否生效
$ kubeadm config images list --config kubeadm-calico-ha.conf
registry.aliyuncs.com/google_containers/kube-apiserver:v1.26.0
registry.aliyuncs.com/google_containers/kube-controller-manager:v1.26.0
registry.aliyuncs.com/google_containers/kube-scheduler:v1.26.0
registry.aliyuncs.com/google_containers/kube-proxy:v1.26.0
registry.aliyuncs.com/google_containers/pause:3.9
registry.aliyuncs.com/google_containers/etcd:3.5.6-
registry.aliyuncs.com/google_containers/coredns:v1.9.3

# 确认没问题之后我们直接拉取镜像
$ kubeadm config images pull --config kubeadm-calico-ha.conf
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-apiserver:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-controller-manager:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-scheduler:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/kube-proxy:v1.26.0
[config/images] Pulled registry.aliyuncs.com/google_containers/pause:3.9
[config/images] Pulled registry.aliyuncs.com/google_containers/etcd:3.5.6-
[config/images] Pulled registry.aliyuncs.com/google_containers/coredns:v1.9.3

# 初始化,注意添加参数--upload-certs确保证书能够上传到kubernetes集群中以secret保存
$ kubeadm init --config kubeadm-calico-ha.conf  --upload-certs
[init] Using Kubernetes version: v1.26.0
[preflight] Running pre-flight checks
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
...此处略去一堆输出...

当我们看到下面这个输出结果的时候,我们的集群就算是初始化成功了。

Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:

  mkdir -$HOME/.kube
  sudo cp -/etc/kubernetes/admin.conf $HOME/.kube/config
  sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

  export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
  https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of the control-plane node running the following command on each as root:

  kubeadm join k8s-calico-apiserver.tinychen.io:8443 --token abcdef.0123456789abcdef \
        --discovery-token-ca-cert-hash sha256:b451b6484f9b68fbd5b7959b2ae2333088322a12b941bf143131c15acca8728d \
        --control-plane --certificate-key 2dad0007267f115f594f4db514f4f664fd0fef4a639791f97893afb1409dbfa5

Please note that the certificate-key gives access to cluster sensitive data, keep it secret!
As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use
"kubeadm init phase upload-certs --upload-certs" to reload certs afterward.

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join k8s-calico-apiserver.tinychen.io:8443 --token abcdef.0123456789abcdef \
        --discovery-token-ca-cert-hash sha256:b451b6484f9b68fbd5b7959b2ae2333088322a12b941bf143131c15acca8728d

接下来我们在剩下的两个master节点上面执行上面输出的命令,注意要执行带有--control-plane --certificate-key这两个参数的命令,其中--control-plane参数是确定该节点为master控制面节点,而--certificate-key参数则是把我们前面初始化集群的时候通过--upload-certs上传到k8s集群中的证书下载下来使用。

This node has joined the cluster and a new control plane instance was created:

* Certificate signing request was sent to apiserver and approval was received.
* The Kubelet was informed of the new secure connection details.
* Control plane label and taint were applied to the new node.
* The Kubernetes control plane instances scaled up.
* A new etcd member was added to the local/stacked etcd cluster.

To start administering your cluster from this node, you need to run the following as a regular user:

        mkdir -p $HOME/.kube
        sudo cp -/etc/kubernetes/admin.conf $HOME/.kube/config
        sudo chown $(id -u):$(id -g) $HOME/.kube/config

Run 'kubectl get nodes' to see this node join the cluster.

后再对剩下的三个worker节点执行普通的加入集群命令,当看到下面的输出的时候说明节点成功加入集群了。

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

如果不小心没保存初始化成功的输出信息,或者是以后还需要新增节点也没有关系,我们可以使用kubectl工具查看或者生成token

查看现有的token列表
kubeadm token list
TOKEN                     TTL         EXPIRES                USAGES                   DESCRIPTION                                                EXTRA GROUPS
abcdef.0123456789abcdef   23h         2022-12-09T08:14:37Z   authentication,signing   <none>                                                     system:bootstrappers:kubeadm:default-node-token
dss91p.3r5don4a3e9r2f29   1h          2022-12-08T10:14:36Z   <none>                   Proxy for managing TTL for the kubeadm-certs secret        <none>

如果token已经失效,那就再创建一个新的token
kubeadm token create
8hmoux.jabpgvs521r8rsqm

kubeadm token list
TOKEN                     TTL         EXPIRES                USAGES                   DESCRIPTION                                                EXTRA GROUPS
8hmoux.jabpgvs521r8rsqm   23h         2022-12-09T08:29:29Z   authentication,signing   <none>                                                     system:bootstrappers:kubeadm:default-node-token
abcdef.0123456789abcdef   23h         2022-12-09T08:14:37Z   authentication,signing   <none>                                                     system:bootstrappers:kubeadm:default-node-token
dss91p.3r5don4a3e9r2f29   1h          2022-12-08T10:14:36Z   <none>                   Proxy for managing TTL for the kubeadm-certs secret        <none>

如果找不到--discovery-token-ca-cert-hash参数,则可以在master节点上使用openssl工具来获取
openssl x509 -pubkey -in /etc/kubernetes/pki/ca.crt | openssl rsa -pubin -outform der 2>/dev/null | openssl dgst -sha256 -hex | sed 's/^.* //'
cc68219b233262d8834ad5d6e96166be487c751b53fb9ec19a5ca3599b538a33

4.4 配置kubeconfig

刚初始化成功之后,我们还没办法马上查看k8s集群信息,需要配置kubeconfig相关参数才能正常使用kubectl连接apiserver读取集群信息。

# 对于非root用户,可以这样操作
mkdir -p $HOME/.kube
sudo cp -/etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

# 如果是root用户,可以直接导入环境变量
export KUBECONFIG=/etc/kubernetes/admin.conf

# 添加kubectl的自动补全功能
echo "source <(kubectl completion bash)" >> ~/.bashrc

前面我们提到过kubectl不一定要安装在集群内,实际上只要是任何一台能连接到apiserver的机器上面都可以安装kubectl并且根据步骤配置kubeconfig,就可以使用kubectl命令行来管理对应的k8s集群。

配置完成后,我们再执行相关命令就可以查看集群的信息了,但是此时节点的状态还是NotReady,接下来就需要部署CNI了。

$ kubectl cluster-info
Kubernetes control plane is running at https://k8s-calico-apiserver.tinychen.io:8443
CoreDNS is running at https://k8s-calico-apiserver.tinychen.io:8443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.


$ kubectl get nodes -o wide
NAME                                       STATUS     ROLES           AGE     VERSION   INTERNAL-IP   EXTERNAL-IP   OS-IMAGE                KERNEL-VERSION                CONTAINER-RUNTIME
k8s-calico-master-10-31-90-1.tinychen.io   NotReady   control-plane   7m55s   v1.26.0   10.31.90.1    <none>        CentOS Linux 7 (Core)   3.10.-1160.62.1.el7.x86_64   containerd://1.6.14
k8s-calico-master-10-31-90-2.tinychen.io   NotReady   control-plane   4m44s   v1.26.0   10.31.90.2    <none>        CentOS Linux 7 (Core)   3.10.-1160.62.1.el7.x86_64   containerd://1.6.14
k8s-calico-master-10-31-90-3.tinychen.io   NotReady   control-plane   2m44s   v1.26.0   10.31.90.3    <none>        CentOS Linux 7 (Core)   3.10.-1160.62.1.el7.x86_64   containerd://1.6.14
k8s-calico-worker-10-31-90-4.tinychen.io   NotReady   <none>          2m9s    v1.26.0   10.31.90.4    <none>        CentOS Linux 7 (Core)   3.10.-1160.62.1.el7.x86_64   containerd://1.6.14
k8s-calico-worker-10-31-90-5.tinychen.io   NotReady   <none>          91s     v1.26.0   10.31.90.5    <none>        CentOS Linux 7 (Core)   3.10.-1160.62.1.el7.x86_64   containerd://1.6.14
k8s-calico-worker-10-31-90-6.tinychen.io   NotReady   <none>          63s     v1.26.0   10.31.90.6    <none>        CentOS Linux 7 (Core)   3.10.-1160.62.1.el7.x86_64   containerd://1.6.14

$ kubectl get pods --o wide
NAMESPACE     NAME                                                               READY   STATUS    RESTARTS   AGE     IP           NODE                                       NOMINATED NODE   READINESS GATES
kube-system   coredns-5bbd96d687-l84hq                                           /1     Pending             8m11s   <none>       <none>                                     <none>           <none>
kube-system   coredns-5bbd96d687-wbmdq                                           /1     Pending             8m11s   <none>       <none>                                     <none>           <none>
kube-system   etcd-k8s-calico-master-10-31-90-1.tinychen.io                      1/1     Running             8m10s   10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   etcd-k8s-calico-master-10-31-90-2.tinychen.io                      1/1     Running             4m51s   10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   etcd-k8s-calico-master-10-31-90-3.tinychen.io                      1/1     Running             3m      10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>
kube-system   haproxy-k8s-calico-master-10-31-90-1.tinychen.io                   1/1     Running             8m10s   10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   haproxy-k8s-calico-master-10-31-90-2.tinychen.io                   1/1     Running             4m45s   10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   haproxy-k8s-calico-master-10-31-90-3.tinychen.io                   1/1     Running             3m      10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>
kube-system   keepalived-k8s-calico-master-10-31-90-1.tinychen.io                1/1     Running             8m10s   10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   keepalived-k8s-calico-master-10-31-90-2.tinychen.io                1/1     Running             4m57s   10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   keepalived-k8s-calico-master-10-31-90-3.tinychen.io                1/1     Running             3m1s    10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>
kube-system   kube-apiserver-k8s-calico-master-10-31-90-1.tinychen.io            1/1     Running             8m9s    10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   kube-apiserver-k8s-calico-master-10-31-90-2.tinychen.io            1/1     Running             4m43s   10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   kube-apiserver-k8s-calico-master-10-31-90-3.tinychen.io            1/1     Running             3m      10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>
kube-system   kube-controller-manager-k8s-calico-master-10-31-90-1.tinychen.io   1/1     Running             8m10s   10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   kube-controller-manager-k8s-calico-master-10-31-90-2.tinychen.io   1/1     Running             4m58s   10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   kube-controller-manager-k8s-calico-master-10-31-90-3.tinychen.io   1/1     Running             3m      10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>
kube-system   kube-proxy-9x6gc                                                   1/1     Running             108s    10.31.90.5   k8s-calico-worker-10-31-90-5.tinychen.io   <none>           <none>
kube-system   kube-proxy-jnfqm                                                   1/1     Running             8m10s   10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   kube-proxy-kb2d5                                                   1/1     Running             80s     10.31.90.6   k8s-calico-worker-10-31-90-6.tinychen.io   <none>           <none>
kube-system   kube-proxy-n5g6b                                                   1/1     Running             5m1s    10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   kube-proxy-tsqz8                                                   1/1     Running             2m26s   10.31.90.4   k8s-calico-worker-10-31-90-4.tinychen.io   <none>           <none>
kube-system   kube-proxy-wcgch                                                   1/1     Running             3m1s    10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>
kube-system   kube-scheduler-k8s-calico-master-10-31-90-1.tinychen.io            1/1     Running             8m10s   10.31.90.1   k8s-calico-master-10-31-90-1.tinychen.io   <none>           <none>
kube-system   kube-scheduler-k8s-calico-master-10-31-90-2.tinychen.io            1/1     Running             4m51s   10.31.90.2   k8s-calico-master-10-31-90-2.tinychen.io   <none>           <none>
kube-system   kube-scheduler-k8s-calico-master-10-31-90-3.tinychen.io            1/1     Running             3m      10.31.90.3   k8s-calico-master-10-31-90-3.tinychen.io   <none>           <none>

5、安装CNI

5.1 部署calico

CNI的部署我们参考官网的自建K8S部署教程[14],官网主要给出了两种部署方式[15],分别是通过Calico operatorCalico manifests来进行部署和管理calico,operator是通过deployment的方式部署一个calico的operator到集群中,再用其来管理calico的安装升级等生命周期操作。manifests则是将相关都使用yaml的配置文件进行管理,这种方式管理起来相对前者比较麻烦,但是对于高度自定义的K8S集群有一定的优势。

这里我们使用operator的方式进行部署。

首先我们把需要用到的两个部署文件下载到本地。

curl https://raw.githubusercontent.com/projectcalico/calico/v3.24.5/manifests/tigera-operator.yaml -O
curl https://raw.githubusercontent.com/projectcalico/calico/v3.24.5/manifests/custom-resources.yaml -O

随后我们修改custom-resources.yaml里面的pod ip段信息和划分子网的大小。

cat custom-resources.yaml
# This section includes base Calico installation configuration.
# For more information, see: https://projectcalico.docs.tigera.io/master/reference/installation/api#operator.tigera.io/v1.Installation
apiVersion: operator.tigera.io/v1
kind: Installation
metadata:
  name: default
spec:
  # Configures Calico networking.
  calicoNetwork:
    # Note: The ipPools section cannot be modified post-install.
    ipPools:
    - blockSize: 24
      cidr: 10.33.0.0/17
      encapsulation: VXLANCrossSubnet
      natOutgoing: Enabled
      nodeSelector: all()

---

# This section configures the Calico API server.
# For more information, see: https://projectcalico.docs.tigera.io/master/reference/installation/api#operator.tigera.io/v1.APIServer
apiVersion: operator.tigera.io/v1
kind: APIServer
metadata:
  name: default
spec: {}

后我们直接部署

kubectl create -f tigera-operator.yaml
kubectl create -f custom-resources.yaml

此时部署完成之后我们应该可以看到所有的pod和node都已经处于正常工作状态。接下来我们进入配置阶段

5.2 安装calicoctl

接下来我们就要部署calicoctl[16]来帮助我们管理calico的相关配置,为了使用 Calico 的许多功能,需要 calicoctl 命令行工具。它用于管理 Calico 策略和配置,以及查看详细的集群状态。

The calicoctl command line tool is required in order to use many of Calico’s features. It is used to manage Calico policies and configuration, as well as view detailed cluster status.

这里我们可以直接使用二进制部署安装

curl -https://github.com/projectcalico/calico/releases/download/v3.24.5/calicoctl-linux-amd64 -o /usr/local/bin/calicoctl
chmod +/usr/local/bin/calicoctl

至于配置也比较简单,因为我们这里使用的是直接连接apiserver的方式,所以直接配置环境变量即可

export CALICO_DATASTORE_TYPE=kubernetes
export CALICO_KUBECONFIG=~/.kube/config
calicoctl get workloadendpoints -A
calicoctl node status

5.3 配置BGP

一般来说,calico的BGP拓扑[17]可以分为三种配置:

  • • Full-mesh(全网状连接):启用 BGP 后,Calico 的默认行为是创建内部 BGP (iBGP) 连接的全网状连接,其中每个节点相互对等。这允许 Calico 在任何 L2 网络上运行,无论是公共云还是私有云,或者是配置[18]了基于IPIP的overlays网络。Calico 不将 BGP 用于 VXLAN overlays网络。全网状结构非常适合 100 个或更少节点的中小型部署,但在规模明显更大的情况下,全网状结构的效率会降低,calico建议使用路由反射器(Route reflectors)。

  • • Route reflectors(路由反射器):要构建大型内部 BGP (iBGP) 集群,可以使用BGP 路由反射器来减少每个节点上使用的 BGP 对等体的数量。在这个模型中,一些节点充当路由反射器,并被配置为在它们之间建立一个完整的网格。然后将其他节点配置为与这些路由反射器的子集对等(通常为 2 个用于冗余),与全网状相比减少了 BGP 对等连接的总数。

  • • Top of Rack (ToR):在本地部署中,我们可以直接让calico和物理网络基础设施建立BGP连接,一般来说这需要先把calico默认自带的Full-mesh配置禁用掉,然后将calico和本地的L3 ToR路由建立连接。当整个自建集群的规模很大的时候(通常仅当每个 L2 域中的节点数大于100时),还可以考虑在每个机架内使用BGP的路由反射器(Route reflectors)。要深入了解常见的本地部署模型,请参阅Calico over IP Fabrics[19]

我们这里只是一个小规模的测试集群(6节点),暂时用不上路由反射器这类复杂的配置,因此我们参考第三种TOR的模式,让node直接和我们测试网络内的L3路由器建立BGP连接即可。

在刚初始化的情况下,我们的calico是还没有创建BGPConfiguration,此时我们需要先手动创建,并且禁用nodeToNodeMesh配置,同时还需要借助calico将集群的ClusterIPExternalIP都发布出去。

$ cat calico-bgp-configuration.yaml
apiVersion: projectcalico.org/v3
kind: BGPConfiguration
metadata:
  name: default
spec:
  logSeverityScreen: Info
  nodeToNodeMeshEnabled: false
  asNumber: 64517
  serviceClusterIPs:
  - cidr: 10.33.128.0/18
  serviceExternalIPs:
  - cidr: 10.33.192.0/18
  listenPort: 179
  bindMode: NodeIP
  communities:
  - name: bgp-large-community
    value: 64517:300:100
  prefixAdvertisements:
  - cidr: 10.33../17
    communities:
    - bgp-large-community
    - 64517:120
    

另一个就是需要准备BGPPeer的配置,可以同时配置一个或者多个,下面的示例配置了两个BGPPeer,并且ASN号各不相同。其中keepOriginalNextHop默认是不配置的,这里特别配置为true,确保通过BGP宣发pod IP段路由的时候只宣发对应的node,而不是针对podIP也开启ECMP功能。详细的配置可以参考官方文档[20]

$ cat calico-bgp-peer.yaml
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
  name: openwrt-peer
spec:
  peerIP: 10.31.254.253
  keepOriginalNextHop: true
  asNumber: 64512
---
apiVersion: projectcalico.org/v3
kind: BGPPeer
metadata:
  name: tiny-unraid-peer
spec:
  peerIP: 10.31.100.100
  keepOriginalNextHop: true
  asNumber: 64516
  

配置完成之后我们直接部署即可,这时候集群默认的node-to-node-mesh就已经被我们禁用,此外还可以看到我们配置的两个BGPPeer已经顺利建立连接并发布路由了。

$ kubectl create -f calico-bgp-configuration.yaml
$ kubectl create -f calico-bgp-peer.yaml


$ calicoctl node status
Calico process is running.

IPv4 BGP status
+---------------+-----------+-------+----------+-------------+
| PEER ADDRESS  | PEER TYPE | STATE |  SINCE   |    INFO     |
+---------------+-----------+-------+----------+-------------+
| 10.31.254.253 | global    | up    | 08:03:49 | Established |
| 10.31.100.100 | global    | up    | 08:12:01 | Established |
+---------------+-----------+-------+----------+-------------+

IPv6 BGP status
No IPv6 peers found.

6、配置LoadBalancer

目前市面上开源的K8S-LoadBalancer主要就是MetalLB[21]OpenELB[22]PureLB[23]这三种,三者的工作原理和使用教程我都写文章分析过,针对目前这种使用场景,我个人认为合适的是使用PureLB,因为他的组件高度模块化,并且可以自由选择实现ECMP模式的路由协议和软件(MetalLB和OpenELB都是自己通过gobgp实现的BGP协议),能更好的和我们前面的calico BGP模式组合在一起,借助calico自带的BGP配置把LoadBalancer IP发布到集群外。

关于purelb的详细工作原理和部署使用方式可以参考我之前写的这篇文章[24],这里不再赘述。

  • • Allocator:用来监听API中的LoadBalancer类型服务,并且负责分配IP。

  • • LBnodeagent: 作为daemonset部署到每个可以暴露请求并吸引流量的节点上,并且负责监听服务的状态变化同时负责把VIP添加到本地网卡或者是虚拟网卡

  • • KubeProxy:k8s的内置组件,并非是PureLB的一部分,但是PureLB依赖其进行正常工作,当对VIP的请求达到某个具体的节点之后,需要由kube-proxy来负责将其转发到对应的pod

因为我们此前已经配置了calico的BGP模式,并且会由它来负责BGP宣告的相关操作,因此在这里我们直接使用purelb的BGP模式,并且不需要自己再额外部署bird或frr来进行BGP路由发布,同时也不需要LBnodeagent组件来帮助暴露并吸引流量,只需要Allocator帮助我们完成LoadBalancerIP的分配操作即可。

# 下载官方提供的yaml文件到本地进行部署
$ wget https://gitlab.com/api/v4/projects/purelb%2Fpurelb/packages/generic/manifest/0.0.1/purelb-complete.yaml

# 请注意,由于 Kubernetes 的终一致性架构,此manifest清单的个应用程序可能会失败。发生这种情况是因为清单既定义了CRD,又使用该CRD创建了资源。如果发生这种情况,请再次应用manifest清单,应该就会部署成功。
$ kubectl apply -f purelb-complete.yaml
$ kubectl apply -f purelb-complete.yaml

# lbnodeagent的这个ds我们这里用不到,因此可以直接删除。
$ kubectl delete ds -n purelb lbnodeagent

# 接下来我们部署一个ipam的sg,命名为bgp-ippool,ip段就使用我们预留的 10.33.192.0/18 
cat purelb-ipam.yaml
apiVersion: purelb.io/v1
kind: ServiceGroup
metadata:
  name: bgp-ippool
  namespace: purelb
spec:
  local:
    v4pool:
      subnet: '10.33.192.0/18'
      pool: '10.33.192.0-10.33.255.254'
      aggregation: /32
$ kubectl apply -f purelb-ipam.yaml
$ kubectl get sg -n purelb
NAME         AGE
bgp-ippool   64s

到这里我们的PureLB就部署完了,相比完整的ECMP模式要少部署了路由协议软件和**额外删除了lbnodeagent**,接下来可以开始测试了。

7、部署测试用例

集群部署完成之后我们在k8s集群中部署一个nginx测试一下是否能够正常工作。首先我们创建一个名为nginx-quic的命名空间(namespace),然后在这个命名空间内创建一个名为nginx-quic-deploymentdeployment用来部署pod,后再创建一个service用来暴露服务,这里我们同时使用nodeportLoadBalancer两种方式来暴露服务,并且其中一个LoadBalancer的服务还要指定LoadBalancerIP方便我们测试。

cat ngx-system.yaml
apiVersion: v1
kind: Namespace
metadata:
  name: nginx-quic

---

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx-quic-deployment
  namespace: nginx-quic
spec:
  selector:
    matchLabels:
      app: nginx-quic
  replicas: 4
  template:
    metadata:
      labels:
        app: nginx-quic
    spec:
      containers:
      - name: nginx-quic
        image: tinychen777/nginx-quic:latest
        imagePullPolicy: IfNotPresent
        ports:
        - containerPort: 80

---

apiVersion: v1
kind: Service
metadata:
  name: nginx-headless-service
  namespace: nginx-quic
spec:
  selector:
    app: nginx-quic
  clusterIP: None


---

apiVersion: v1
kind: Service
metadata:
  name: nginx-quic-service
  namespace: nginx-quic
spec:
  externalTrafficPolicy: Cluster
  selector:
    app: nginx-quic
  ports:
  - protocol: TCP
    port: 8080 match for service access port
    targetPort: 80 match for pod access port
    nodePort: 30088 match for external access port
  type: NodePort


---

apiVersion: v1
kind: Service
metadata:
  name: nginx-clusterip-service
  namespace: nginx-quic
spec:
  selector:
    app: nginx-quic
  ports:
  - protocol: TCP
    port: 8080 match for service access port
    targetPort: 80 match for pod access port
  type: ClusterIP

---

apiVersion: v1
kind: Service
metadata:
  annotations:
    purelb.io/service-group: bgp-ippool
  name: nginx-lb-service
  namespace: nginx-quic
spec:
  allocateLoadBalancerNodePorts: true
  externalTrafficPolicy: Cluster
  internalTrafficPolicy: Cluster
  selector:
    app: nginx-quic
  ports:
  - protocol: TCP
    port: 80 match for service access port
    targetPort: 80 match for pod access port
  type: LoadBalancer
  loadBalancerIP: 10.33.192.80


---

apiVersion: v1
kind: Service
metadata:
  annotations:
    purelb.io/service-group: bgp-ippool
  name: nginx-lb2-service
  namespace: nginx-quic
spec:
  allocateLoadBalancerNodePorts: true
  externalTrafficPolicy: Cluster
  internalTrafficPolicy: Cluster
  selector:
    app: nginx-quic
  ports:
  - protocol: TCP
    port: 80 match for service access port
    targetPort: 80 match for pod access port
  type: LoadBalancer

部署完成之后我们检查各项服务的状态

$ kubectl get svc -n nginx-quic -o wide
NAME                      TYPE           CLUSTER-IP      EXTERNAL-IP    PORT(S)          AGE     SELECTOR
nginx-clusterip-service   ClusterIP      10.33.141.36    <none>         8080/TCP         2d22h   app=nginx-quic
nginx-headless-service    ClusterIP      None            <none>         <none>           2d22h   app=nginx-quic
nginx-lb-service          LoadBalancer   10.33.151.137   10.33.192.80   80:30167/TCP     2d22h   app=nginx-quic
nginx-lb2-service         LoadBalancer   10.33.154.206   10.33.192.0    80:31868/TCP     2d22h   app=nginx-quic
nginx-quic-service        NodePort       10.33.150.169   <none>         8080:30088/TCP   2d22h   app=nginx-quic

$ kubectl get pods -n nginx-quic -o wide
NAME                                     READY   STATUS    RESTARTS   AGE     IP           NODE                                       NOMINATED NODE   READINESS GATES
nginx-quic-deployment-5d7d9559dd-2f4kx   1/1     Running             2d22h   10.33.26.2   k8s-calico-worker-10-31-90-4.tinychen.io   <none>           <none>
nginx-quic-deployment-5d7d9559dd-8gm7s   1/1     Running             2d22h   10.33.93.3   k8s-calico-worker-10-31-90-6.tinychen.io   <none>           <none>
nginx-quic-deployment-5d7d9559dd-jwhth   1/1     Running             2d22h   10.33.93.2   k8s-calico-worker-10-31-90-6.tinychen.io   <none>           <none>
nginx-quic-deployment-5d7d9559dd-qxhqh   1/1     Running             2d22h   10.33.12.2   k8s-calico-worker-10-31-90-5.tinychen.io   <none>           <none>

随后我们在集群外的机器进行测试,分别访问podIP 、clusterIP和loadbalancerIP

# 访问pod IP
root@tiny-unraid:~# curl 10.33.26.2
10.31.100.100:43240

# 访问clusterIP
root@tiny-unraid:~# curl 10.33.151.137
10.31.90.5:52758

# 访问loadbalancerIP
root@tiny-unraid:~# curl 10.33.192.0
10.31.90.5:7319
# 访问loadbalancerIP
root@tiny-unraid:~# curl 10.33.192.80
10.31.90.5:38170

# 在集群内的node进行测试
[root@k8s-calico-master-10-31-90-1 ~]# curl 10.33.26.2
10.31.90.1:40222
[root@k8s-calico-master-10-31-90-1 ~]# curl 10.33.151.137
10.31.90.1:50773
[root@k8s-calico-master-10-31-90-1 ~]# curl 10.33.192.0
10.31.90.1:19219
[root@k8s-calico-master-10-31-90-1 ~]# curl 10.33.192.80
10.31.90.1:22346

# 在集群内的pod进行测试
[root@nginx-quic-deployment-5d7d9559dd-8gm7s /]# curl 10.33.26.2
10.33.93.3:39560
[root@nginx-quic-deployment-5d7d9559dd-8gm7s /]# curl 10.33.151.137
10.33.93.3:58160
[root@nginx-quic-deployment-5d7d9559dd-8gm7s /]# curl 10.33.192.0
10.31.90.6:34183
[root@nginx-quic-deployment-5d7d9559dd-8gm7s /]# curl 10.33.192.80
10.31.90.6:64266

后检测一下路由器端的情况,可以看到对应的podIP、clusterIP和loadbalancerIP段路由

B>* 10.33.5.0/24 [20/] via 10.31.90.1, eth0, weight 1, 2d19h22m
B>* 10.33.12.0/24 [20/] via 10.31.90.5, eth0, weight 1, 2d19h22m
B>* 10.33.23.0/24 [20/] via 10.31.90.2, eth0, weight 1, 2d19h22m
B>* 10.33.26.0/24 [20/] via 10.31.90.4, eth0, weight 1, 2d19h22m
B>* 10.33.57.0/24 [20/] via 10.31.90.3, eth0, weight 1, 2d19h22m
B>* 10.33.93.0/24 [20/] via 10.31.90.6, eth0, weight 1, 2d19h22m
B>* 10.33.128.0/18 [20/] via 10.31.90.1, eth0, weight 1, 00:00:20
  *                       via 10.31.90.2, eth0, weight 1, 00:00:20
  *                       via 10.31.90.3, eth0, weight 1, 00:00:20
  *                       via 10.31.90.4, eth0, weight 1, 00:00:20
  *                       via 10.31.90.5, eth0, weight 1, 00:00:20
  *                       via 10.31.90.6, eth0, weight 1, 00:00:20
B>* 10.33.192.0/18 [20/] via 10.31.90.1, eth0, weight 1, 2d19h21m
  *                       via 10.31.90.2, eth0, weight 1, 2d19h21m
  *                       via 10.31.90.3, eth0, weight 1, 2d19h21m
  *                       via 10.31.90.4, eth0, weight 1, 2d19h21m
  *                       via 10.31.90.5, eth0, weight 1, 2d19h21m
  *                       via 10.31.90.6, eth0, weight 1, 2d19h21m

到这里整个K8S集群就部署完成了。

引用链接

[1] 方案: https://tinychen.com/tags/k8s/
[2] kube-proxy 中的 IPVS 实现: https://github.com/kubernetes/kubernetes/blob/master/pkg/proxy/ipvs/README.md#run-kube-proxy-in-ipvs-mode
[3] 这里: https://kubernetes.io/docs/setup/production-environment/container-runtimes/
[4] containerd: https://kubernetes.io/docs/setup/production-environment/container-runtimes/#containerd
[5] deprecated: https://github.com/containerd/containerd/blob/main/RELEASES.md#deprecated-features
[6] github上面: https://github.com/containernetworking/plugins/releases
[7] 详细的文档: https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/configure-cgroup-driver/
[8] 这篇官方文档: https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
[9] 这篇官方文档: https://github.com/kubernetes/kubeadm/blob/main/docs/ha-considerations.md#high-availability-considerations
[10] 官方推荐方案: https://github.com/kubernetes/kubeadm/blob/main/docs/ha-considerations.md#keepalived-and-haproxy
[11] 静态pod的部署方式: https://github.com/kubernetes/kubeadm/blob/main/docs/ha-considerations.md#option-2-run-the-services-as-static-pods
[12] Stacked control plane and etcd nodes: https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/#stacked-control-plane-and-etcd-nodes
[13] 官方文档: https://github.com/kubernetes/kubernetes/blob/master/pkg/proxy/ipvs/README.md#cluster-created-by-kubeadm
[14] 部署教程: https://projectcalico.docs.tigera.io/getting-started/kubernetes/self-managed-onprem/
[15] 部署方式: https://projectcalico.docs.tigera.io/getting-started/kubernetes/self-managed-onprem/onpremises
[16] 部署calicoctl: https://projectcalico.docs.tigera.io/maintenance/clis/calicoctl/install
[17] BGP拓扑: https://projectcalico.docs.tigera.io/networking/bgp
[18] 配置: https://projectcalico.docs.tigera.io/networking/vxlan-ipip
[19] Calico over IP Fabrics: https://projectcalico.docs.tigera.io/reference/architecture/design/l2-interconnect-fabric
[20] 官方文档: https://projectcalico.docs.tigera.io/reference/resources/bgppeer
[21] MetalLB: https://tinychen.com/20220519-k8s-06-loadbalancer-metallb/
[22] OpenELB: https://tinychen.com/20220523-k8s-07-loadbalancer-openelb/
[23] PureLB: https://tinychen.com/20220524-k8s-08-loadbalancer-purelb/
[24] 这篇文章: https://tinychen.com/20220524-k8s-08-loadbalancer-purelb/


相关文章