Spark 之 运行架构

2022-05-31 00:00:00 集群 执行 节点 启动 计算

1. 运行架构

Spark框架的核心是一个计算引擎,它采用了标准 master-slave 的结构。

Spark执行时的基本结构。图中的Driver表示master,负责管理整个集群中的作业任务调度。图中的Executor 则是 slave,负责实际执行任务

2.核心组件

2.1 Driver

Spark驱动器节点,用于执行Spark任务中的main方法,负责实际代码的执行工作。Driver在Spark作业执行时主要负责:

将用户程序转化为作业(job)
在Executor之间调度任务(task)
跟踪Executor的执行情况
通过UI展示查询运行情况
复制代码

实际上,我们无法准确地描述Driver的定义,因为在整个的编程过程中没有看到任何有关Driver的字眼。所以简单理解,所谓的Driver就是驱使整个应用运行起来的程序,也称之为Driver类。

2.2 Executor

Spark Executor是集群中工作节点(Worker)中的一个JVM进程,负责在 Spark 作业中运行具体任务(Task),任务彼此之间相互独立。Spark 应用启动时,Executor节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。如果有Executor节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他Executor节点上继续运行。

Executor有两个核心功能:

  • 负责运行组成Spark应用的任务,并将结果返回给驱动器进程
  • 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 是直接缓存在Executor进程内的,因此任务可以在运行时充分利用缓存数据加速运算。

2.3 Master & Worker

Spark集群的独立部署环境中,不需要依赖其他的资源调度框架,自身就实现了资源调度的功能,所以环境中还有其他两个核心组件:Master和Worker,这里的Master是一个进程,主要负责资源的调度和分配,并进行集群的监控等职责,类似于Yarn环境中的RM, 而Worker呢,也是进程,一个Worker运行在集群中的一台服务器上,由Master分配资源对数据进行并行的处理和计算,类似于Yarn环境中NM。

2.4 ApplicationMaster

Hadoop用户向YARN集群提交应用程序时,提交程序中应该包含ApplicationMaster,用于向资源调度器申请执行任务的资源容器Container,运行用户自己的程序任务job,监控整个任务的执行,跟踪整个任务的状态,处理任务失败等异常情况。
说的简单点就是,ResourceManager(资源)和Driver(计算)之间的解耦合靠的就是ApplicationMaster。

3. 核心概念

3.1 Executor与Core(核)

Spark Executor是集群中运行在工作节点(Worker)中的一个JVM进程,是整个集群中的专门用于计算的节点。在提交应用中,可以提供参数指定计算节点的个数,以及对应的资源。这里的资源一般指的是工作节点Executor的内存大小和使用的虚拟CPU核(Core)数量。

应用程序相关启动参数如下:

名称说明
--num-executors配置Executor的数量
--executor-memory配置每个Executor的内存大小
--executor-cores配置每个Executor的虚拟CPU core数量

3.2 并行度(Parallelism)

在分布式计算框架中一般都是多个任务同时执行,由于任务分布在不同的计算节点进行计算,所以能够真正地实现多任务并行执行,记住,这里是并行,而不是并发。这里我们将整个集群并行执行任务的数量称之为并行度。那么一个作业到底并行度是多少呢?这个取决于框架的默认配置。应用程序也可以在运行过程中动态修改。

3.3 有向无环图(DAG)

  • 大数据计算引擎框架我们根据使用方式的不同一般会分为四类,其中类就是Hadoop所承载的MapReduce,它将计算分为两个阶段,分别为 Map阶段 和 Reduce阶段。对于上层应用来说,就不得不想方设法去拆分算法,甚至于不得不在上层应用实现多个 Job 的串联,以完成一个完整的算法,例如迭代计算。 由于这样的弊端,催生了支持 DAG 框架的产生。因此,支持 DAG 的框架被划分为第二代计算引擎。如 Tez 以及更上层的 Oozie。这里我们不去细究各种 DAG 实现之间的区别,不过对于当时的 Tez 和 Oozie 来说,大多还是批处理的任务。接下来就是以 Spark 为代表的第三代的计算引擎。第三代计算引擎的特点主要是 Job 内部的 DAG 支持(不跨越 Job),以及实时计算。

  • 这里所谓的有向无环图,并不是真正意义的图形,而是由Spark程序直接映射成的数据流的抽象模型。简单理解就是将整个程序计算的执行过程用图形表示出来,这样更直观,更便于理解,可以用于表示程序的拓扑结构。

  • DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。

4. 提交流程

所谓的提交流程,其实就是我们开发人员根据需求写的应用程序通过Spark客户端提交给Spark运行环境执行计算的流程。在不同的部署环境中,这个提交过程基本相同,但是又有细微的区别,我们这里不进行详细的比较,但是因为国内工作中,将Spark引用部署到Yarn环境中会更多一些,所以本课程中的提交流程是基于Yarn环境的。

Spark应用程序提交到Yarn环境中执行的时候,一般会有两种部署执行的方式:Client和Cluster。两种模式主要区别在于:Driver程序的运行节点位置。

4.1 Yarn Client模式

  • Client模式将用于监控和调度的Driver模块在客户端执行,而不是在Yarn中,所以一般用于测试。
    • Driver在任务提交的本地机器上运行
    • Driver启动后会和ResourceManager通讯申请启动ApplicationMaster
    • ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,负责向ResourceManager申请Executor内存
    • ResourceManager接到ApplicationMaster的资源申请后会分配container,然后ApplicationMaster在资源分配指定的NodeManager上启动Executor进程
    • Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数
    • 之后执行到Action算子时,触发一个Job,并根据宽依赖开始划分stage,每个stage生成对应的TaskSet,之后将task分发到各个Executor上执行。

4.2 Yarn Cluster模式

  • Cluster模式将用于监控和调度的Driver模块启动在Yarn集群资源中执行,一般应用于实际生产环境。
    • 在YARN Cluster模式下,任务提交后会和ResourceManager通讯申请启动ApplicationMaster,
    • 随后ResourceManager分配container,在合适的NodeManager上启动ApplicationMaster,此时的ApplicationMaster就是Driver。
    • Driver启动后向ResourceManager申请Executor内存,ResourceManager接到ApplicationMaster的资源申请后会分配container,然后在合适的NodeManager上启动Executor进程
    • Executor进程启动后会向Driver反向注册,Executor全部注册完成后Driver开始执行main函数,
    • 之后执行到Action算子时,触发一个Job,并根据宽依赖开始划分stage,每个stage生成对应的TaskSet,之后将task分发到各个Executor上执行。

相关文章