在所有 pandas 列中将字符串转换为浮点数,这是可能的
问题描述
我从列表列表中创建了一个 pandas 数据框
I created a pandas dataframe from a list of lists
import pandas as pd
df_list = [["a", "1", "2"], ["b", "3", np.nan]]
df = pd.DataFrame(df_list, columns = list("ABC"))
>>> A B C
0 a 1 2
1 b 3 NaN
有没有办法将数据框的所有列转换为可以转换的浮点数,即 B 和 C?如果您知道要转换哪些列,则可以使用以下方法:
Is there a way to convert all columns of the dataframe to float, that can be converted, i.e. B and C? The following works, if you know, which columns to convert:
df[["B", "C"]] = df[["B", "C"]].astype("float")
但是,如果您事先不知道哪些列包含数字,您会怎么做?当我尝试时
But what do you do, if you don't know in advance, which columns contain the numbers? When I tried
df = df.astype("float", errors = "ignore")
所有列仍然是字符串/对象.同样,
all columns are still strings/objects. Similarly,
df[["B", "C"]] = df[["B", "C"]].apply(pd.to_numeric)
转换两列(虽然B"是 int
而C"是float",因为存在 NaN
值),但是
converts both columns (though "B" is int
and "C" is "float", because of the NaN
value being present), but
df = df.apply(pd.to_numeric)
显然会引发错误消息,我看不出有什么方法可以抑制它.
是否有可能在不遍历每一列的情况下执行此字符串-浮点转换,以尝试 .astype("float", errors = "ignore")
?
obviously throws an error message and I don't see a way to suppress this.
Is there a possibility to perform this string-float conversion without looping through each column, to try .astype("float", errors = "ignore")
?
解决方案
我觉得你需要errors='ignore'pandas-docs/stable/generated/pandas.to_numeric.html" rel="noreferrer">to_numeric
:
I think you need parameter errors='ignore'
in to_numeric
:
df = df.apply(pd.to_numeric, errors='ignore')
print (df.dtypes)
A object
B int64
C float64
dtype: object
如果不是混合值,它工作得很好 - 带有字符串的数字:
It working nice if not mixed values - numeric with strings:
df_list = [["a", "t", "2"], ["b", "3", np.nan]]
df = pd.DataFrame(df_list, columns = list("ABC"))
df = df.apply(pd.to_numeric, errors='ignore')
print (df)
A B C
0 a t 2.0 <=added t to column B for mixed values
1 b 3 NaN
print (df.dtypes)
A object
B object
C float64
dtype: object
您也可以将 int
向下转换为 float
s:
You can downcast also int
to float
s:
df = df.apply(pd.to_numeric, errors='ignore', downcast='float')
print (df.dtypes)
A object
B float32
C float32
dtype: object
同理:
df = df.apply(lambda x: pd.to_numeric(x, errors='ignore', downcast='float'))
print (df.dtypes)
A object
B float32
C float32
dtype: object
相关文章