Memcached启动分析
入口文件: memcached.c
入口函数:main()
参数校验就直接略过
初始化主线程的libevent
main_base = event_init();
初始化stats信息
在文本协议的memcached中,我们nc/telent后输入stats命令,会很快地输出一些当前memcached的信息的。这些就是stats信息。并不是输入stats的时候才遍历统计出来的。而是已经保存好了这份信息。代码调用在main函数中的:
static void stats_init(void) {
memset(&stats, , sizeof(struct stats));
memset(&stats_state, , sizeof(struct stats_state));
stats_state.accepting_conns = true; /* assuming we start in this state. */
/* make the time we started always be 2 seconds before we really
did, so time(0) - time.started is never zero. if so, things
like 'settings.oldest_live' which act as booleans as well as
values are now false in boolean context... */
process_started = time() - ITEM_UPDATE_INTERVAL - 2;
stats_prefix_init(settings.prefix_delimiter);
}
初始化连接信息
static void conn_init(void) {
/* We're unlikely to see an FD much higher than maxconns. */
int next_fd = dup(1);
if (next_fd < ) {
perror("Failed to duplicate file descriptor\n");
exit(1);
}
int headroom = 10; /* account for extra unexpected open FDs */
struct rlimit rl;
max_fds = settings.maxconns + headroom + next_fd;
/* But if possible, get the actual highest FD we can possibly ever see. */
if (getrlimit(RLIMIT_NOFILE, &rl) == ) {
max_fds = rl.rlim_max;
} else {
fprintf(stderr, "Failed to query maximum file descriptor; "
"falling back to maxconns\n");
}
close(next_fd);
if ((conns = calloc(max_fds, sizeof(conn *))) == NULL) {
fprintf(stderr, "Failed to allocate connection structures\n");
/* This is unrecoverable so bail out early. */
exit(1);
}
}
为了更快地找到connection的fd(文件描述符),实际上申请的connection会比配置的更大一点。
hash桶初始化
void assoc_init(const int htable_init) {
if (hashtable_init) {
hashpower = hashtable_init;
}
primary_hashtable = calloc(hashsize(hashpower), sizeof(void *));
if (! primary_hashtable) {
fprintf(stderr, "Failed to init hashtable.\n");
exit(EXIT_FAILURE);
}
STATS_LOCK();
stats_state.hash_power_level = hashpower;
stats_state.hash_bytes = hashsize(hashpower) * sizeof(void *);
STATS_UNLOCK();
}
在memcached中,保存着一份hash表用来存放memcached key。默认这个hash表是2^16(65536)个key。后续会根据规则动态扩容这个hash表的。如果希望启动的时候,这个hash表更大,可以-o 参数调节。
hash表中, memcached key作为key,value是item指针,并不是item value。
初始化slabs
void slabs_init(const size_t limit, const double factor, const bool prealloc, const uint32_t *slab_sizes, void *mem_base_external, bool reuse_mem) {
int i = POWER_SMALLEST - 1;
unsigned int size = sizeof(item) + settings.chunk_size;
/* Some platforms use runtime transparent hugepages. If for any reason
* the initial allocation fails, the required settings do not persist
* for remaining allocations. As such it makes little sense to do slab
* preallocation. */
bool __attribute__ ((unused)) do_slab_prealloc = false;
mem_limit = limit;
if (prealloc && mem_base_external == NULL) {
mem_base = alloc_large_chunk(mem_limit);
if (mem_base) {
do_slab_prealloc = true;
mem_current = mem_base;
mem_avail = mem_limit;
} else {
fprintf(stderr, "Warning: Failed to allocate requested memory in"
" one large chunk.\nWill allocate in smaller chunks\n");
}
} else if (prealloc && mem_base_external != NULL) {
// Can't (yet) mix hugepages with mmap allocations, so separate the
// logic from above. Reusable memory also force-preallocates memory
// pages into the global pool, which requires turning mem_* variables.
do_slab_prealloc = true;
mem_base = mem_base_external;
// _current shouldn't be used in this case, but we set it to where it
// should be anyway.
if (reuse_mem) {
mem_current = ((char*)mem_base) + mem_limit;
mem_avail = ;
} else {
mem_current = mem_base;
mem_avail = mem_limit;
}
}
memset(slabclass, , sizeof(slabclass));
while (++i < MAX_NUMBER_OF_SLAB_CLASSES-1) {
if (slab_sizes != NULL) {
if (slab_sizes[i-1] == )
break;
size = slab_sizes[i-1];
} else if (size >= settings.slab_chunk_size_max / factor) {
break;
}
/* Make sure items are always n-byte aligned */
if (size % CHUNK_ALIGN_BYTES)
size += CHUNK_ALIGN_BYTES - (size % CHUNK_ALIGN_BYTES);
slabclass[i].size = size;
slabclass[i].perslab = settings.slab_page_size / slabclass[i].size;
if (slab_sizes == NULL)
size *= factor;
if (settings.verbose > 1) {
fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
i, slabclass[i].size, slabclass[i].perslab);
}
}
power_largest = i;
slabclass[power_largest].size = settings.slab_chunk_size_max;
slabclass[power_largest].perslab = settings.slab_page_size / settings.slab_chunk_size_max;
if (settings.verbose > 1) {
fprintf(stderr, "slab class %3d: chunk size %9u perslab %7u\n",
i, slabclass[i].size, slabclass[i].perslab);
}
/* for the test suite: faking of how much we've already malloc'd */
{
char *t_initial_malloc = getenv("T_MEMD_INITIAL_MALLOC");
if (t_initial_malloc) {
mem_malloced = (size_t)atol(t_initial_malloc);
}
}
if (do_slab_prealloc) {
if (!reuse_mem) {
slabs_preallocate(power_largest);
}
}
}
hash桶中初始化的是key。slabs初始化的是这些key对应的value
在初始化slab的时候,下一个slab的size(chunk size)总是大于等于当前slab的size的。
初始化worker线程
void memcached_thread_init(int nthreads, void *arg) {
int i;
int power;
for (i = ; i < POWER_LARGEST; i++) {
pthread_mutex_init(&lru_locks[i], NULL);
}
pthread_mutex_init(&worker_hang_lock, NULL);
pthread_mutex_init(&init_lock, NULL);
pthread_cond_init(&init_cond, NULL);
pthread_mutex_init(&cqi_freelist_lock, NULL);
cqi_freelist = NULL;
/* Want a wide lock table, but don't waste memory */
if (nthreads < 3) {
power = 10;
} else if (nthreads < 4) {
power = 11;
} else if (nthreads < 5) {
power = 12;
} else if (nthreads <= 10) {
power = 13;
} else if (nthreads <= 20) {
power = 14;
} else {
/* 32k buckets. just under the hashpower default. */
power = 15;
}
if (power >= hashpower) {
fprintf(stderr, "Hash table power size (%d) cannot be equal to or less than item lock table (%d)\n", hashpower, power);
fprintf(stderr, "Item lock table grows with `-t N` (worker threadcount)\n");
fprintf(stderr, "Hash table grows with `-o hashpower=N` \n");
exit(1);
}
item_lock_count = hashsize(power);
item_lock_hashpower = power;
item_locks = calloc(item_lock_count, sizeof(pthread_mutex_t));
if (! item_locks) {
perror("Can't allocate item locks");
exit(1);
}
for (i = ; i < item_lock_count; i++) {
pthread_mutex_init(&item_locks[i], NULL);
}
threads = calloc(nthreads, sizeof(LIBEVENT_THREAD));
if (! threads) {
perror("Can't allocate thread descriptors");
exit(1);
}
for (i = ; i < nthreads; i++) {
int fds[2];
if (pipe(fds)) {
perror("Can't create notify pipe");
exit(1);
}
threads[i].notify_receive_fd = fds[];
threads[i].notify_send_fd = fds[1];
#ifdef EXTSTORE
threads[i].storage = arg;
#endif
setup_thread(&threads[i]);
/* Reserve three fds for the libevent base, and two for the pipe */
stats_state.reserved_fds += 5;
}
/* Create threads after we've done all the libevent setup. */
for (i = ; i < nthreads; i++) {
create_worker(worker_libevent, &threads[i]);
}
/* Wait for all the threads to set themselves up before returning. */
pthread_mutex_lock(&init_lock);
wait_for_thread_registration(nthreads);
pthread_mutex_unlock(&init_lock);
}
worker线程和main线程,组成了libevent的reactor模式
这个函数主要是完成n个子线程的初始化以及开启执行。其中setup_thread函数完成线程结构体LIBEVENT_THREAD成员初始化,
首先将给子线程分配一个libevent实例,然后将notify_receive_fd加入这个libevent的可读事件。
接着为这个子线程的消息队列分配内存,并初始化。
后为这个子线程创建后缀缓存,暂时还不知道这缓存的用处。
create_worker函数用于开启子线程,个参数为回调函数,第二个参数为回调函数的参数。回调函数即线程执行函数。在这个回调函数worker_libevent又调用了register_thread_initialized这个函数,注册这个子线程。后调用libevent的event_base_loop函数开启子线程的事件循环。
static void setup_thread(LIBEVENT_THREAD *me) {
me->base = event_init();//分配一个libevent实例
if (! me->base) {
fprintf(stderr, "Can't allocate event base\n");
exit(1);
}
/* Listen for notifications from other threads */
event_set(&me->notify_event, me->notify_receive_fd,
EV_READ | EV_PERSIST, thread_libevent_process, me);
event_base_set(me->base, &me->notify_event);
//将管道添加libevent事件循环中
if (event_add(&me->notify_event, ) == -1) {
fprintf(stderr, "Can't monitor libevent notify pipe\n");
exit(1);
}
//给消息队列分配内存
me->new_conn_queue = malloc(sizeof(struct conn_queue));
if (me->new_conn_queue == NULL) {
perror("Failed to allocate memory for connection queue");
exit(EXIT_FAILURE);
}
//初始化消息队列,将head和tail初始化为NULL
cq_init(me->new_conn_queue);
if (pthread_mutex_init(&me->stats.mutex, NULL) != ) {
perror("Failed to initialize mutex");
exit(EXIT_FAILURE);
}
//分配缓存
me->suffix_cache = cache_create("suffix", SUFFIX_SIZE, sizeof(char*),
NULL, NULL);
if (me->suffix_cache == NULL) {
fprintf(stderr, "Failed to create suffix cache\n");
exit(EXIT_FAILURE);
}
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
static void create_worker(void *(*func)(void *), void *arg) {
pthread_t thread;
pthread_attr_t attr;
int ret;
pthread_attr_init(&attr);
//开启子线程执行,子线程函数为回调函数func
if ((ret = pthread_create(&thread, &attr, func, arg)) != ) {
fprintf(stderr, "Can't create thread: %s\n",
strerror(ret));
exit(1);
}
}
/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
static void *worker_libevent(void *arg) {
LIBEVENT_THREAD *me = arg;
/* Any per-thread setup can happen here; memcached_thread_init() will block until
* all threads have finished initializing.
*/
register_thread_initialized();
//开启事件循环
event_base_loop(me->base, );
return NULL;
}
到此为止,子线程就建立完毕,此时,子线程都已经处于libevent的事件循环当中,而且只有管道的可读一个事件。
启动主线程socket监听
/* create the listening socket, bind it, and init */
if (settings.socketpath == NULL) {
...
errno = ;
if (settings.port && server_sockets(settings.port, tcp_transport,
portnumber_file)) {
vperror("failed to listen on TCP port %d", settings.port);
exit(EX_OSERR);
}
...
server_sockets中调用了server_socket()函数 核心代码如下:
static int server_socket(const char *interface,
int port,
enum network_transport transport,
FILE *portnumber_file, bool ssl_enabled) {
// ...
for (next= ai; next; next= next->ai_next) {
conn *listen_conn_add;
if ((sfd = new_socket(next)) == -1) {
// ...
continue;
}
// 省略ipv6逻辑...
if (bind(sfd, next->ai_addr, next->ai_addrlen) == -1) {
// ...
close(sfd);
continue;
} else {
success++;
if (!IS_UDP(transport) && listen(sfd, settings.backlog) == -1) {
// ...
}
// ...
}
// 省略udp逻辑...
if (!(listen_conn_add = conn_new(sfd, conn_listening,
EV_READ | EV_PERSIST, 1,
transport, main_base, NULL))) {
// ...
}
// ...
}
代码中使用socket()和bind()方法启动了tcp服务器,并得到这个代表memcached server的fd
我们进入conn_new中,看到主线程的event_handler回调函数如下:
void event_handler(const int fd, const short which, void *arg) {
conn *c;
c = (conn *)arg;
assert(c != NULL);
c->which = which;
/* sanity */
if (fd != c->sfd) {
if (settings.verbose > )
fprintf(stderr, "Catastrophic: event fd doesn't match conn fd!\n");
conn_close(c);
return;
}
drive_machine(c);
/* wait for next event */
return;
}
可以看到这个event_handler里面只是做了一些错误检查,然后就立即交给drive_machine函数进行处理了
这个drive_machine逻辑如下:
addrlen = sizeof(addr);
#ifdef HAVE_ACCEPT4
if (use_accept4) {
sfd = accept4(c->sfd, (struct sockaddr *)&addr, &addrlen, SOCK_NONBLOCK);
} else {
sfd = accept(c->sfd, (struct sockaddr *)&addr, &addrlen);
}
#else
sfd = accept(c->sfd, (struct sockaddr *)&addr, &addrlen);
#endif
// 省略流程无关代码...
#ifdef TLS
// ssl相关逻辑省略...
#endif
dispatch_conn_new(sfd, conn_new_cmd, EV_READ | EV_PERSIST,
DATA_BUFFER_SIZE, c->transport, ssl_v);
}
stop = true;
可以看到master线程的tcp服务器有新客户端连接进入后,drive_machine处理逻辑会立即获取这个memcached客户端连接fd为sfd,并交给了dispatch_conn_new函数进行处理
dispatch_conn_new函数核心逻辑如下:
void dispatch_conn_new(int sfd, enum conn_states init_state, int event_flags,
int read_buffer_size, enum network_transport transport, void *ssl) {
CQ_ITEM *item = cqi_new();
char buf[1];
if (item == NULL) {
close(sfd);
/* given that malloc failed this may also fail, but let's try */
fprintf(stderr, "Failed to allocate memory for connection object\n");
return ;
}
//选择子线程
int tid = (last_thread + 1) % settings.num_threads;
LIBEVENT_THREAD *thread = threads + tid;
last_thread = tid;
item->sfd = sfd;
item->init_state = init_state;
item->event_flags = event_flags;
item->read_buffer_size = read_buffer_size;
item->transport = transport;
item->mode = queue_new_conn;
item->ssl = ssl;
//将消息实例插入选择的子线程的消息队列中
cq_push(thread->new_conn_queue, item);
MEMCACHED_CONN_DISPATCH(sfd, thread->thread_id);
buf[] = 'c';
//给这个子线程发送一个字符,激活管道可读事件。
if (write(thread->notify_send_fd, buf, 1) != 1) {
perror("Writing to thread notify pipe");
}
}
选择一个worker线程用于处理这个客户端连接后续的读写操作
声明了一个CQ_ITEM结构体代表这个客户端的连接,并保存到worker线程的new_conn_queue属性上,这个属性是个数组,并且被当成队列使用了
向worker线程的notify_send_fd属性发送一个字符'c'通知worker线程有新客户端连接分配给它了
后续worker线程的event_base监听到notify_receive_fd的可读事件就开始工作了, 因为这里使用pipe线程通信技术,所以notify_send_fd写数据,触发notify_receive_fd的可读事件.
注:1、memcache的消息是预先分配的,默认先分配64个CQ_ITEM消息实例,这样可以避免较多的内存碎片产生。所以CQ_ITEM *item = cqi_new()如果是次调用,则先分配64个CQ_ITEM实例,然后返回个;之后再次调用这个函数时,则是直接从预先分配的CQ_ITEM链表中获取。
2、子线程的选择是采用轮询的方式,每次选择的线程总是上次选择线程的下一个线程。
worker线程获取客户端连接
worker线程的回调在master里就指定好了,参考:thread.c::setup_thread(),
worker的回调函数被指定为了thread_libevent_process,结合master的处理流程,这个worker的回调函数只有在master得到新连接时被触发
static void thread_libevent_process(int fd, short which, void *arg) {
LIBEVENT_THREAD *me = arg;
CQ_ITEM *item;
char buf[1];
conn *c;
unsigned int timeout_fd;
if (read(fd, buf, 1) != 1) {
if (settings.verbose > )
fprintf(stderr, "Can't read from libevent pipe\n");
return;
}
switch (buf[]) {
case 'c':
item = cq_pop(me->new_conn_queue);
if (NULL == item) {
break;
}
switch (item->mode) {
case queue_new_conn:
c = conn_new(item->sfd, item->init_state, item->event_flags,
item->read_buffer_size, item->transport,
me->base, item->ssl);
if (c == NULL) {
if (IS_UDP(item->transport)) {
fprintf(stderr, "Can't listen for events on UDP socket\n");
exit(1);
} else {
if (settings.verbose > ) {
fprintf(stderr, "Can't listen for events on fd %d\n",
item->sfd);
}
#ifdef TLS
if (item->ssl) {
SSL_shutdown(item->ssl);
SSL_free(item->ssl);
}
#endif
close(item->sfd);
}
} else {
c->thread = me;
#ifdef TLS
if (settings.ssl_enabled && c->ssl != NULL) {
assert(c->thread && c->thread->ssl_wbuf);
c->ssl_wbuf = c->thread->ssl_wbuf;
}
#endif
}
break;
case queue_redispatch:
conn_worker_readd(item->c);
break;
}
cqi_free(item);
break;
/* we were told to pause and report in */
case 'p':
register_thread_initialized();
break;
/* a client socket timed out */
case 't':
if (read(fd, &timeout_fd, sizeof(timeout_fd)) != sizeof(timeout_fd)) {
if (settings.verbose > )
fprintf(stderr, "Can't read timeout fd from libevent pipe\n");
return;
}
conn_close_idle(conns[timeout_fd]);
break;
/* asked to stop */
case 's':
event_base_loopexit(me->base, NULL);
break;
}
}
worker调用cq_pop从队列中获取客户端连接后,然后就交给了conn_new函数进行处理
conn_new函数把客户端的读写事件交给了event_handler函数进行处理,核心代码如下
event_set(&c->event, sfd, event_flags, event_handler, (void *)c);
master也使用event_handler函数来处理master的事件,worker也使用event_handler处理事件,是不会冲突的,因为在event_handler里的drive_machine执行体中,会通过这个事件参数conn结构体的state属性的进行分支判断, worker的conn的state从CQ_ITEM获取,值为conn_new_cmd
drive_machine核心代码如下:
while (!stop) {
case conn_new_cmd:
/* Only process nreqs at a time to avoid starving other
connections */
--nreqs;
if (nreqs >= ) {
reset_cmd_handler(c);
} else {
// 异常处理逻辑...
}
break;
}
把请求交给了reset_cmd_handler()函数进行处理,核心代码如下:
static void reset_cmd_handler(conn *c) {
// ...
if (c->rbytes > ) {
conn_set_state(c, conn_parse_cmd);
} else {
conn_set_state(c, conn_waiting);
}
}
如果还有数据可以读取,就设置state为conn_parse_cmd状态,否则,进入conn_waiting状态
我们进入conn_parse_cmd状态分支(同样是在当前的循环内):
case conn_parse_cmd :
if (c->try_read_command(c) == 0) {
/* wee need more data! */
conn_set_state(c, conn_waiting);
}
break;
进行数据读取,然后将状态设置为conn_waiting, 这个try_read_command里面就对客户端的输入进行了处理,并把结果返回了客户端,参考: try_read_command_ascii
static int try_read_command_ascii(conn *c) {
char *el, *cont;
if (c->rbytes == )
return ;
el = memchr(c->rcurr, '\n', c->rbytes);
if (!el) {
// 略过异常处理逻辑...
return ;
}
cont = el + 1;
if ((el - c->rcurr) > 1 && *(el - 1) == '\r') {
el--;
}
*el = '\0';
assert(cont <= (c->rcurr + c->rbytes));
c->last_cmd_time = current_time;
process_command(c, c->rcurr);
c->rbytes -= (cont - c->rcurr);
c->rcurr = cont;
assert(c->rcurr <= (c->rbuf + c->rsize));
return 1;
}
process_command就是具体的命令处理了。
总结:主线程启动及分配请求流程:
server_sockets——>
server_socket——>
conn_new——>
event_handler——>
drive_machine——>
try_read_command(这里会判定,是文本协议还是二进制协议)
相关文章