学了那么多 NoSQL 数据库 NoSQL 究竟是啥
NoSQL 简史
NoSQL 一词早出现于 1998 年,是 Carlo Strozzi 开发的一个轻量、开源、不提供 SQL 功能的关系数据库。
2009 年,Last.fm 的 Johan Oskarsson 发起了一次关于分布式开源数据库的讨论,来自 Rackspace 的 Eric Evans 再次提出了 NoSQL 的概念,这时的 NoSQL 主要指非关系型、分布式、不提供 ACID 的数据库设计模式。
2009 年在亚特兰大举行的"no:sql(east)"讨论会是一个里程碑,其口号是"select fun, profit from real_world where relational=false"。因此,对 NoSQL 普遍的解释是"非关联型的",强调 Key-Value Stores 和文档数据库的优点,而不是单纯的反对 RDBMS。
什么是 NoSQL
NoSQL(Not Only SQL)
,意思是"不仅仅是 SQL",指的是非关系型数据库,是对不同于传统的关系型数据库的数据库管理系统的统称。
NoSQL 用于超大规模数据的存储。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
为什么使用 NoSQL
随着互联网的飞速发展与普及,网民上网冲浪时所产生数据也逐日增多,从 GB 到 TB 到 PB。这些数据有很大一部分都是由关系型数据库管理系统(RDBMS)来进行处理的。
由于关系型数据库的范式约束、事务特性、磁盘 IO 等特点,若服务器使用关系型数据库,当有大量数据产生时,传统的关系型数据库已经无法满足快速查询与插入数据的需求。NoSQL 的出现解决了这一危机。它通过降低数据的安全性,减少对事务的支持,减少对复杂查询的支持,获取性能上的提升。但是,在某些特定场景下 NoSQL 仍然不是佳人选,比如一些要有事务与安全指标的场景。
NoSQL 是一项全新的数据库革命性运动,早期就有人提出,发展至 2009 年趋势越发高涨。NoSQL 的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。
RDBMS vs. NoSQL
常见的数据库管理系统
根据 DB-Engines:db-engines.com/en/ranking 的排行,本文截取了排行榜 Top 50 如下图所示。DB-Engines 排名根据数据库管理系统的受欢迎程度对其进行排名。该排名每月更新一次。
NoSQL 数据库四大家族
键值(Key-Value)存储
特点:键值数据库就像传统语言中使用的哈希表。通过 Key 添加、查询或者删除数据。
优点:查询速度快。
缺点:数据无结构化,通常只被当作字符串或者二进制数据存储。
应用场景:内容缓存、用户信息比如会话、配置信息、购物车等,主要用于处理大量数据的高访问负载。
NoSQL 代表:Redis、Memcached...
文档(Document-Oriented)存储
特点:文档数据库将数据以文档的形式储存,类似 JSON,是一系列数据项的集合。每个数据项都有一个名称与对应的值,值既可以是简单的数据类型,如字符串、数字和日期等;也可以是复杂的类型,如有序列表和关联对象。
优点:数据结构要求不严格,表结构可变,不需要像关系型数据库一样需要预先定义表结构。
缺点:查询性能不高,缺乏统一的查询语法。
应用场景:日志、 Web 应用等。
NoSQL 代表:MongoDB、CouchDB...
列(Wide Column Store/Column-Family)存储
特点:列存储数据库将数据储存在列族(Column Family)中,将多个列聚合成一个列族,键仍然存在,但是它们的特点是指向了多个列。举个例子,如果我们有一个 Person 类,我们通常会一起查询他们的姓名和年龄而不是薪资。这种情况下,姓名和年龄就会被放入一个列族中,而薪资则在另一个列族中。
优点:列存储查找速度快,可扩展性强,更容易进行分布式扩展,适用于分布式的文件系统,应对分布式存储的海量数据。
缺点:查询性能不高,缺乏统一的查询语法。
应用场景:日志、 分布式的文件系统(对象存储)、推荐画像、时空数据、消息/订单等。
NoSQL 代表:Cassandra、HBase...
图形(Graph-Oriented)存储
特点:图形数据库允许我们将数据以图的方式储存。
优点:图形相关算法。比如短路径寻址,N 度关系查找等。
缺点:很多时候需要对整个图做计算才能得出需要的信息,分布式的集群方案不好做,处理超级节点乏力,没有分片存储机制,国内社区不活跃。
应用场景:社交网络,推荐系统等。专注于构建关系图谱。
NoSQL 代表:Neo4j、Infinite Graph...
NoSQL 的优缺点
优点
- 高可扩展性
- 没有标准化
- 分布式计算
- 有限的查询功能(到目前为止)
- 低成本
缺点
- 终一致是不直观的程序
- 架构的灵活性,半结构化数据
- 没有复杂的关系
总结
NoSQL 数据库在以下几种情况下比较适用:
- 数据模型比较简单
- 需要灵活性更强的 IT 系统
- 对数据库性能要求较高
- 不需要高度的数据一致性
- 对于给定的 Key,比较容易映射复杂值的环境
相关文章