Pandas 将 csv 读取为字符串类型
问题描述
我有一个带有字母数字键的数据框,我想将其保存为 csv 并稍后读回.由于各种原因,我需要将此键列显式读取为字符串格式,我有严格数字的键,甚至更糟,例如:1234E5,Pandas 将其解释为浮点数.这显然使密钥完全无用.
I have a data frame with alpha-numeric keys which I want to save as a csv and read back later. For various reasons I need to explicitly read this key column as a string format, I have keys which are strictly numeric or even worse, things like: 1234E5 which Pandas interprets as a float. This obviously makes the key completely useless.
问题是,当我为数据框或其任何列指定字符串 dtype 时,我只会得到垃圾.我这里有一些示例代码:
The problem is when I specify a string dtype for the data frame or any column of it I just get garbage back. I have some example code here:
df = pd.DataFrame(np.random.rand(2,2),
index=['1A', '1B'],
columns=['A', 'B'])
df.to_csv(savefile)
数据框如下:
A B
1A 0.209059 0.275554
1B 0.742666 0.721165
然后我是这样读的:
df_read = pd.read_csv(savefile, dtype=str, index_col=0)
结果是:
A B
B ( <
这是我的电脑问题,还是我在这里做错了什么,或者只是一个错误?
Is this a problem with my computer, or something I'm doing wrong here, or just a bug?
解决方案
更新:这有 已修复:从 0.11.1 开始,您传递 str
/np.str
将等同于使用 object
.
Update: this has been fixed: from 0.11.1 you passing str
/np.str
will be equivalent to using object
.
使用对象数据类型:
In [11]: pd.read_csv('a', dtype=object, index_col=0)
Out[11]:
A B
1A 0.35633069074776547 0.745585398803751
1B 0.20037376323337375 0.013921830784260236
或者更好,只是不要指定数据类型:
or better yet, just don't specify a dtype:
In [12]: pd.read_csv('a', index_col=0)
Out[12]:
A B
1A 0.356331 0.745585
1B 0.200374 0.013922
但是绕过类型嗅探器并真正返回 only 字符串需要使用 converters
:
but bypassing the type sniffer and truly returning only strings requires a hacky use of converters
:
In [13]: pd.read_csv('a', converters={i: str for i in range(100)})
Out[13]:
A B
1A 0.35633069074776547 0.745585398803751
1B 0.20037376323337375 0.013921830784260236
其中 100
是等于或大于您的总列数的某个数字.
where 100
is some number equal or greater than your total number of columns.
最好避免使用 str dtype,例如参见 这里.
相关文章