Docker环境部署Prometheus实践

2022-02-18 00:00:00 节点 服务 容器 告警 监控

一、Prometheus简介

Prometheus是由SoundCloud开发的开源监控报警系统和时序列数据库(TSDB)。

Prometheus使用Go语言开发,是Google BorgMon监控系统的开源版本。 2016年由Google发起Linux基金会旗下的原生云基金会(Cloud Native Computing Foundation), 将Prometheus纳入其下第二大开源项目。 Prometheus目前在开源社区相当活跃。 Prometheus和Heapster(Heapster是K8S的一个子项目,用于获取集群的性能数据。)相比功能更完善、更全面。Prometheus性能也足够支撑上万台规模的集群。

1.系统架构图

2.基本原理

Prometheus的基本原理是通过HTTP协议周期性抓取被监控组件的状态,任意组件只要提供对应的HTTP接口就可以接入监控。不需要任何SDK或者其他的集成过程。这样做非常适合做虚拟化环境监控系统,比如VM、Docker、Kubernetes等。输出被监控组件信息的HTTP接口被叫做exporter 。目前互联网公司常用的组件大部分都有exporter可以直接使用,比如Varnish、Haproxy、Nginx、MySQL、Linux系统信息(包括磁盘、内存、CPU、网络等等)。

其大概的工作流程是:

  1. Prometheus server 定期从配置好的 jobs 或者 exporters 中拉 metrics,或者接收来自 Pushgateway 发过来的 metrics,或者从其他的 Prometheus server 中拉 metrics。
  2. Prometheus server 在本地存储收集到的 metrics,并运行已定义好的 alert.rules,记录新的时间序列或者向 Alertmanager 推送警报。
  3. Alertmanager 根据配置文件,对接收到的警报进行处理,发出告警。
  4. 在Grafana图形界面中,可视化查看采集数据。

3.Prometheus的特性

  • 多维度数据模型。
  • 灵活的查询语言。
  • 不依赖分布式存储,单个服务器节点是自主的。
  • 通过基于HTTP的pull方式采集时序数据。
  • 可以通过中间网关进行时序列数据推送。
  • 通过服务发现或者静态配置来发现目标服务对象。
  • 支持多种多样的图表和界面展示,比如Grafana等。

4.Prometheus的组件

  • Prometheus Server 主要负责数据采集和存储,提供PromQL查询语言的支持。
  • Alertmanager 警告管理器,用来进行报警。
  • Push Gateway 支持临时性Job主动推送指标的中间网关。
  • Exporters 输出被监控组件信息的HTTP接口。
  • Grafana 监控数据展示Web UI。

5.服务发现

由于 Prometheus 是通过 Pull 的方式主动获取监控数据,也就是每隔几秒钟去各个target采集一次metric。所以需要手工指定监控节点的列表,当监控的节点增多之后,每次增加节点都需要更改配置文件,尽管可以使用接口去热更新配置文件,但仍然非常麻烦,这个时候就需要通过服务发现(service discovery,SD)机制去解决。

Prometheus 支持多种服务发现机制,可以自动获取要收集的 targets,包含的服务发现机制包括:azure、consul、dns、ec2、openstack、file、gce、kubernetes、marathon、triton、zookeeper(nerve、serverset),配置方法可以参考手册的配置页面。可以说 SD 机制是非常丰富的,但目前由于开发资源有限,已经不再开发新的 SD 机制,只对基于文件的 SD 机制进行维护。针对我们现有的系统情况,我们选择了静态配置方式。

二、部署PrometheusServer

1. 使用官方镜像运行

由于Prometheus官方镜像没有开启热加载功能,而且时区相差八小时,所以我们选择了自己制作镜像,当然你也可以使用官方的镜像,提前创建Prometheus配置文件prometheus.yml和Prometheus规则文件rules.yml,然后通过如下命令挂载到官方镜像中运行:

$ docker run -d -p 9090:9090 --name=prometheus \
 -v  /root/prometheus/conf/:/etc/prometheus/  \
prom/prometheus 

相关文章