OpenTSDB简单使用
################################################################
创建metric:
两种方式,选择其一即可。不管何种导入方式都必须先设置metric。
1. 事先在opentsdb中创建metric。如生成两个名为mymetric.data_1和mymetric.data_2的metric。如下:
tsdb mkmetric mymetric.data_1 mymetric.data_21
2.设置自动生成metric。修改opentsdb.conf设置:
tsd.core.auto_create_metrics = true
################################################################
数据写入:
1.telnet方式
telnet localhost 4242
put sys.cpu.user 1436333416 23 host=web01 user=10001
2.API方式
URL:
http://116.196.114.194:4242/api/put?summary
参数:
[
{
"metric": "sys.cpu.nice",
"timestamp": 1502190111,
"value": 18,
"tags": {
"host": "web01",
"dc": "lga"
}
},
{
"metric": "sys.cpu.nice",
"timestamp": 1502190171,
"value": 26,
"tags": {
"host": "web02",
"dc": "lga"
}
}
]
返回:
{
"success": 2,
"failed":
}
3.import方式,批量导入
导入文件格式:
[root@test0926ryc001-master2 test]# cat opentsdb.txt
mymetric.test.data 1479303678 0.841470984808 host=xyd_host
mymetric.test.data 1479303679 0.909297426826 host=xyd_host
mymetric.test.data 1479303680 0.14112000806 host=xyd_host
mymetric.test.data 1479303681 -0.756802495308 host=xyd_host
mymetric.test.data 1479303682 -0.958924274663 host=xyd_host
执行命令:
/root/src/opentsdb-2.4.RC2/build/tsdb import --config=/root/src/opentsdb-2.4.RC2/opentsdb.conf opentsdb.txt
################################################################
数据查询:
一、返回metric=test的近10秒的所有时序数据
1.Get方式:
/api/query?start=10s-ago&m=test
2.Post方式:
{
"start": "10s-ago",
"queries": [{
"aggregator": "none",
"metric": "test"
}]
}
返回:
[
{
"metric": "test",
"tags": {
"device": "D47899",
"label": "6015",
},
"aggregateTags": [],
"dps": {
"1525343027": 26.26,
"1525343032": 25.32
}
},
{
"metric": "test",
"tags": {
"device": "D47899",
"label": "6019",
},
"aggregateTags": [],
"dps": {
"1525343027": 25.32,
"1525343032": 26.74
}
},
……
{
"metric": "test",
"tags": {
"device": "D47899",
"label": "6010",
},
"aggregateTags": [],
"dps": {
"1525343027": 26.8,
"1525343032": 25.75
}
}
]
二、使用filters实现tags条件查询:
1.Get方式:
/api/query?start=10s-ago&m=sum:test{device=*,label=1001|1002}
注:device和label都为tag
2.Post方式:
{
"start": "10s-ago",
"queries": [
{
"aggregator": "sum",
"metric": "test",
"filters": [
{
"type":"wildcard",
"tagk":"device",
"filter":"*",
"groupBy":true
},
{
"type":"literal_or",
"tagk":"label",
"filter":"1001|1002",
"groupBy":true
}
]
}
]
}
返回:
[
{
"metric": "test",
"tags": {
"label": "1001",
"device": "A11223",
"status": "0"
},
"aggregateTags": [],
"dps": {
"1525344862": 24.76,
"1525344867": 24.98
}
},
{
"metric": "app.services.temperature",
"tags": {
"label": "1002",
"device": "A11224",
"status": "0"
},
"aggregateTags": [],
"dps": {
"1525344862": 25.75,
"1525344867": 24.74
}
}
]
三、对每个时序近两小时的数据点按小时分组计算(使用downsample)
1.Get方式:
/api/query?start=2h-ago&m=sum:1h-count:test{device=*,label=1001|1002}
2.Post方式:
{
"start": "2h-ago",
"queries": [
{
"aggregator": "sum",
"metric": "test",
"downsample": "1h-count",
"filters": [
{
"type":"literal_or",
"tagk":"device",
"filter":"*",
"groupBy":true
},
{
"type":"literal_or",
"tagk":"label",
"filter":"1001|1002",
"groupBy":true
}
]
}
]
}
返回:
[
{
"metric": "test",
"tags": {
"label": "1001",
"device": "A11223",
"status": "0"
},
"aggregateTags": [],
"dps": {
"1525341600": 720,
"1525345200": 91
}
},
{
"metric": "test",
"tags": {
"label": "1002",
"device": "A11224",
"status": "0"
},
"aggregateTags": [],
"dps": {
"1525341600": 720,
"1525345200": 91
}
}
]
相关文章