ElasticSearch Aggregations 分析
承接上篇文章 ElasticSearch Rest/RPC 接口解析,这篇文章我们重点分析让ES步入数据分析领域的Aggregation相关的功能和设计。
前言
我记得有一次到一家公司做内部分享,然后有研发问我,即席分析这块,他们用ES遇到一些问题。我当时直接就否了,我说ES还是个全文检索引擎,如果要做分析,还是应该用Impala,Phenix等这种主打分析的产品。随着ES的发展,我现在对它的看法,也有了比较大的变化。而且我认为ES+Spark SQL组合可以很好的增强即席分析能够处理的数据规模,并且能够实现复杂的逻辑,获得较好的易用性。
需要说明的是,我对这块现阶段的理解也还是比较浅。问题肯定有不少,欢迎指正。
Aggregations的基础
Lucene 有三个比较核心的概念:
- 倒排索引
- fieldData/docValue
- Collector
倒排索引不用我讲了,就是term -> doclist的映射。
fieldData/docValue 你可以简单理解为列式存储,索引文件的所有文档的某个字段会被单独存储起来。 对于这块,Lucene 经历了两阶段的发展。阶段是fieldData ,查询时从倒排索引反向构成doc-term。这里面有两个问题:
- 数据需要全部加载到内存
- 次构建会很慢
这两个问题其实会衍生出很多问题:严重的自然是内存问题。所以lucene后面搞了DocValue,在构建索引的时候就生成这个文件。DocValue可以充分利用操作系统的缓存功能,如果操作系统cache住了,则速度和内存访问是一样的。
另外就是Collector的概念,ES的各个Aggregator 实现都是基于Collector做的。我觉得你可以简单的理解为一个迭代器就好,所有的候选集都会调用Collector.collect(doc)
方法,这里collect == iterate 可能会更容易理解些。
ES 能把聚合做快,得益于这两个数据结构,一个迭代器。我们大部分聚合功能,其实都是在fieldData/docValue 上工作的。
Aggregations 分类
Aggregations种类分为:
- Metrics
- Bucket
Metrics 是简单的对过滤出来的数据集进行avg,max等操作,是一个单一的数值。
Bucket 你则可以理解为将过滤出来的数据集按条件分成多个小数据集,然后Metrics会分别作用在这些小数据集上。
对于后聚合出来的结果,其实我们还希望能进一步做处理,所以有了Pipline Aggregations,其实就是组合一堆的Aggregations 对已经聚合出来的结果再做处理。
Aggregations 类设计
下面是一个聚合的例子:
{
"aggregations": {
"user": {
"terms": {
"field": "user",
"size": 10,
"order": {
"_count": "desc"
}
}
}
}
}
相关文章