数据中台和数据仓库
次听到【数据中台】这个概念,是在2016年在TalkingData工作期间,刚完成公司0-1数据仓库建设工作,从初期的需求讨论到终V1.0上线,公消耗3个月之久。近跟同事聊天的时候这个中台的概念又一次被提到,我就再想,数据仓库和数据中台究竟有什么区别,带着这个问题写下个人观点。
数据中台的发展
企业的发展,往往伴随着业务更多元化,而与此同时企业在积极推进业务数据化,因此越来越多的企业伴随着各个垂直业务的发展,形成了一个个垂直的数据中心,如何打通这些数据并且以统一的标准进行建设,以达到技术降本、应用提效、业务赋能的目标,是众多企业面临的问题。阿里巴巴提出的数据中台模式正是为解决这些问题而生,并通过实践形成了统一全域数据体系,实现了计算存储累计过亿的成本降低、响应业务效率多倍提升、为业务快速创新提供坚实保障。阿里巴巴提出的数据中台模式正是为解决这些问题而生,并通过实践形成了统一全域数据体系,实现了计算存储累计过亿的成本降低、响应业务效率多倍提升、为业务快速创新提供坚实保障。
概念
数据仓库,英文名称为Data Warehouse,可简写为DW或DWH。数据仓库,是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合。它是单个数据存储,出于分析性报告和决策支持目的而创建。 为需要业务智能的企业,提供指导业务流程改进、监视时间、成本、质量以及控制。数据仓库 ,由数据仓库之父比尔·恩门(Bill Inmon)于1990年提出,主要功能仍是将组织透过资讯系统之联机事务处理(OLTP)经年累月所累积的大量资料,透过数据仓库理论所特有的资料储存架构,做有系统的分析整理,以利各种分析方法如联机分析处理(OLAP)、数据挖掘(Data Mining)之进行,并进而支持如决策支持系统(DSS)、主管资讯系统(EIS)之创建,帮助决策者能快速有效的自大量资料中,分析出有价值的资讯,以利决策拟、定及快速回应外在环境变动,帮助建构商业智能。
中台是一个基础的理念和架构,我们要把所有的基础服务用中台的思路建设,进行联通,共同支持上端的业务。业务中台更多的是支持在线业务,数据中台提供了基础数据处理能力和很多的数据产品给所有业务方去用。业务中台、数据中台、算法中台等等一起提供对上层业务的支撑——玄难。
从概念上看,数据中台不单数据存储和分析,而是一个独立的职能部门,通过规范化、标准化、流程化、平台化等一些列操作提供公司战略级别数据服务和服务数据。而数据仓库相对来说讲是一种数据治理工具,反应主题、集成和历史变化的数据集合,用于支持管理决策,从这个角度讲数据仓库相对会狭义而数据中台更为宏观,企业战略更明显。
数据仓库更像是一个杯子,等待数据的灌入,
职能
ps:数据仓库本身不提供任何数据服务能力,但是面向主题这一特征缺失数据分析必不可少的依据。
数据中台解决什么问题
数据的价值可以定位一下三块:
阶段:响应运营
响应运营是数据分析直接也是原始的需求,没有谁会不关心自己的用户留存率,没有谁会不关心自己的营收额。同时对于出现故障,预测分析,同样也是非常重要的事情。但是在运营分析过程中,发现一系列的问题,例如各个业务系统的数据存储格式,存储介质都不相同,那么在进行基本的运营分析的时候则无法流畅的进行,不得不进行一系列的数据治理。常见的主数据,元数据就是发生在这个阶段,只是数据仓库将主数据和元数据治理进行了规范化。
第二阶段:响应业务
数据分析停留在运营阶段的时候,对企业来讲大的感受就是投入产出比不对称,这个问题在大数据爆发的时间点更为凸显。例如在今天的业务场景下,传统的数据仓库已经解决不了海量数据,异构数据等一系列问题,而大行其道的大数据分析技术,门槛高,硬件需求高。要实施一个大数据平台,成立一个大数据团队,并不是一个小成本的开销,更何况现在有不少数据分析团队会通过机器学习等手段去对数据做分析来响应运营,这就加剧了成本和门槛的进一步提高。
于是像数据中台这样的思想就被提了出来,既然数据是从业务系统产生的,那么是否业务系统也需要数据分析结果呢?对于数据平台来说,数据平台本身提供两大能力:数据存储和数据计算的能力。那么业务系统的数据存储和数据计算能力是否可以剥离到数据平台,仅仅让业务系统很轻量的维护自己的业务流程操作?所以中台剥离的复杂的业务环境,再配合微服务等技术,一下子让人感受一个词:共享。
而对业务场景来说,很多时候是需要数据的服务的,例如用户的基本信息管理,用户的行为数据分析,这些数据不但可以暴露给业务系统使用,甚至可以直接丢给终端用户自行使用,而这种契合点,让数据平台变成了一个服务,提供给业务系统,而对终端用户来说,自己消费自己数据的同时也在继续产生数据,这样数据就形成了闭环。
第三阶段:创造业务
业务不会总停滞不前,因为人的生活会改变,想要的体验会改变,所以业务系统的功能会跟着改变,当我们发现数据可以逐步变成通用服务提供给业务系统的时候,就会思考,数据是否可以变成个性化服务提供给终端用户?例如不一样的得到不一样的推荐?这是一个非常简单的例子。但是当越来越多这样的服务之后,组合创造的可能性会变高,组合带来的个性化体验会更好,这就是数据服务的创造业务的阶段。
应用架构
简单的画一下刚完成的数据仓库架构图:
相关文章