大数据系列文章之数据中台-二:建设数据中台
大多数的数据人,做数据中台习惯从自顶向下进行建设。这种做法的优点是能够通盘考虑全局问题,保持数据的一致性,但坏处是变动的成本比较高,难以适应高速变化的业务结构。仔细想想,阿里是先有了电商业务,才有了大中台落地的基础;头条做好了抖音,才有了算法中台的诞生;腾讯IM深耕多年,也是基于IM逻辑做数据中台。其实数据中台更多的要走到业务中,为业务贡献价值,才能真的称之为“中台”。
总的来说,在数据服务之上,就是应用层,这里可以分为两类,一类是通用性数据应用,包括报表系统、大屏系统、自助分析系统,本身不具备行业属性,任何业务都可以使用;另一类是行业性的数据应用,比如电商的供应链系统、传媒的舆情系统。在我们的数据中台划分中,通用性的数据应用也被划入了中台的范围内,因为中台本质是提供共性能力,对于数据中台,就是提供共享的数据。
数据分析:业务团队和独立团队的区别
看图说话吧~~~
相关文章