pandas DataFrame 中的自定义浮点格式
问题描述
我有一个DataFrame
:
0 1
0 3.000 5.600
1 1.200 3.456
出于演示目的,我希望将其转换为
and for presentation purposes I would like it to be converted to
0 1
0 3 5.6
1 1.2 3.456
实现这一点的优雅方法是什么(不会在 DataFrame
的条目上进行低效循环)?
What is the elegant way to achieve this (without looping inefficiently over entries of the DataFrame
)?
或者更一般地说:有没有办法设置 pandas
使其始终这样做?例如.pandas
选项之一?
Or perhaps more generally: is there a way to set pandas
up such that it is always doing this? E.g. one of the pandas
options?
请注意 pd.options.display.float_format = '{:,.0f}'.format
将不起作用,因为它会给出固定的小数位数,而不是让它变化我上面指出的 DataFrame
的条目.
Notice that pd.options.display.float_format = '{:,.0f}'.format
will not work, as it would give a fixed number of decimals, rather than having it vary across entries of the DataFrame
as I indicated above.
解决方案
In [188]: df
Out[188]:
a b c
0 1.0000 2.2460 2.0000
1 3.0000 4.4920 6.0000
2 5.0000 6.7380 10.0000
In [189]: pd.options.display.float_format = '{:,.2f}'.format
In [190]: df.apply(lambda x: x.astype(int) if np.allclose(x, x.astype(int)) else x)
Out[190]:
a b c
0 1 2.25 2
1 3 4.49 6
2 5 6.74 10
更新:
In [222]: df
Out[222]:
0 1
0 3.0000 5.6000
1 1.2000 3.4560
In [223]: df.applymap(lambda x: str(int(x)) if abs(x - int(x)) < 1e-6 else str(round(x,2)))
Out[223]:
0 1
0 3 5.6
1 1.2 3.46
注意:请注意,.applymap() 方法非常慢,因为它为 DataFrame 中的每个系列执行 map(func, series)
NOTE: be aware that .applymap() method is pretty slow as it's doing map(func, series)
for each series in the DataFrame
相关文章