Flink SQL 如何实现数据流的 Join?

2020-07-08 00:00:00 数据 缓存 时间 两个 下界

无论在 OLAP 还是 OLTP 领域,Join 都是业务常会涉及到且优化规则比较复杂的 SQL 语句。对于离线计算而言,经过数据库领域多年的积累,Join 语义以及实现已经十分成熟,然而对于近年来刚兴起的 Streaming SQL 来说 Join 却处于刚起步的状态。

其中为关键的问题在于 Join 的实现依赖于缓存整个数据集,而 Streaming SQL Join 的对象却是无限的数据流,内存压力和计算效率在长期运行来说都是不可避免的问题。下文将结合 SQL 的发展解析 Flink SQL 是如何解决这些问题并实现两个数据流的 Join。

离线 Batch SQL Join 的实现

传统的离线 Batch SQL (面向有界数据集的 SQL)有三种基础的实现方式,分别是 Nested-loop Join、Sort-Merge Join 和 Hash Join。

  • Nested-loop Join 为简单直接,将两个数据集加载到内存,并用内嵌遍历的方式来逐个比较两个数据集内的元素是否符合 Join 条件。Nested-loop Join 虽然时间效率以及空间效率都是低的,但胜在比较灵活适用范围广,因此其变体 BNL 常被传统数据库用作为 Join 的默认基础选项。
  • Sort-Merge Join 顾名思义,分为两个 Sort 和 Merge 阶段。首先将两个数据集进行分别排序,然后对两个有序数据集分别进行遍历和匹配,类似于归并排序的合并。值得注意的是,Sort-Merge 只适用于 Equi-Join(Join 条件均使用等于作为比较算子)。Sort-Merge Join 要求对两个数据集进行排序,成本很高,通常作为输入本就是有序数据集的情况下的优化方案。
  • Hash Join 同样分为两个阶段,首先将一个数据集转换为 Hash Table,然后遍历另外一个数据集元素并与 Hash Table 内的元素进行匹配。阶段和个数据集分别称为 build 阶段和 build table,第二个阶段和第二个数据集分别称为 probe 阶段和 probe table。Hash Join 效率较高但对空间要求较大,通常是作为 Join 其中一个表为适合放入内存的小表的情况下的优化方案。和 Sort-Merge Join 类似,Hash Join 也只适用于 Equi-Join。

实时 Streaming SQL Join

相对于离线的 Join,实时 Streaming SQL(面向无界数据集的 SQL)无法缓存所有数据,因此 Sort-Merge Join 要求的对数据集进行排序基本是无法做到的,而 Nested-loop Join 和 Hash Join 经过一定的改良则可以满足实时 SQL 的要求。
我们通过例子来看基本的 Nested Join 在实时 Streaming SQL 的基础实现(案例及图来自 Piotr Nowojski 在 Flink Forward San Francisco 的分享[2])。


图1. Join-in-continuous-query-1


Table A 有 1、42 两个元素,Table B 有 42 一个元素,所以此时的 Join 结果会输出 42。


图2. Join-in-continuous-query-2


接着 Table B 依次接受到三个新的元素,分别是 7、3、1。因为 1 匹配到 Table A 的元素,因此结果表再输出一个元素 1。


图3. Join-in-continuous-query-3


随后 Table A 出现新的输入 2、3、6,3 匹配到 Table B 的元素,因此再输出 3 到结果表。

可以看到在 Nested-Loop Join 中我们需要保存两个输入表的内容,而随着时间的增长 Table A 和 Table B 需要保存的历史数据无止境地增长,导致很不合理的内存磁盘资源占用,而且单个元素的匹配效率也会越来越低。类似的问题也存在于 Hash Join 中。

那么有没有可能设置一个缓存剔除策略,将不必要的历史数据及时清理呢?答案是肯定的,关键在于缓存剔除策略如何实现,这也是 Flink SQL 提供的三种 Join 的主要区别。

Flink SQL 的 Join

  • Regular Join

Regular Join 是为基础的没有缓存剔除策略的 Join。Regular Join 中两个表的输入和更新都会对全局可见,影响之后所有的 Join 结果。举例,在一个如下的 Join 查询里,Orders 表的新纪录会和 Product 表所有历史纪录以及未来的纪录进行匹配。

SELECT * FROM Orders
INNER JOIN Product
ON Orders.productId = Product.id

相关文章