numba,让python速度提升百倍

2020-06-19 00:00:00 函数 代码 数组 循环 微秒

python由于它动态解释性语言的特性,跑起代码来相比java、c++要慢很多,尤其在做科学计算的时候,十亿百亿级别的运算,让python的这种劣势更加凸显。

办法永远比困难多,numba就是解决python慢的一大利器,可以让python的运行速度提升上百倍!


什么是numba?

numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。

python之所以慢,是因为它是靠CPython编译的,numba的作用是给python换一种编译器。

python、c、numba三种编译器速度对比

使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。

import numpy as np
import numba
from numba import jit

@jit(nopython=True) # jit,numba装饰器中的一种
def go_fast(a): # 调用时,函数被编译为机器代码
    trace = 
    # 假设输入变量是numpy数组
    for i in range(a.shape[]):   # Numba 擅长处理循环
        trace += np.tanh(a[i, i]) 
    return a + trace

相关文章