R语言数据处理——数据合并与追加
数据结构的塑造是数据可视化前重要的一环,虽说本公众号重心在于数据可视化,可是涉及到一些至关重要的数据整合技巧,还是有必要跟大家分享一下的。
在可视化前的数据处理技巧中,导入导出、长宽转换已经跟大家详细的介绍过了。
今天跟大大家分享数据集的合并与追加,并且这里根据所依赖函数的处理效率,给出诺干套解决方案。
数据合并操作涉及以下几个问题:
横向合并;
1. 是否需要匹配字段
1.1 匹配字段合并
1.1.1 主字段同名
1.1.2 主字段不同名
1.2 无需匹配字段合并
纵向合并:(情况比较简单,列字段数量相同,名称相同)
因为纵向合并情况比较简单,所以本篇讲解也着重以横向合并为主,按照以上几个问题,需要用到的函数列举如下:
cbind rbind merge plyr::join tidyr:: inner_join/full_join/left_join/right_join
首先介绍base内置的两三个函数:
cbind rbind merge
###横向追加(无需匹配字段)
数据集构造如下:
ID<-c(1,2,3,4)
Name<-c("A","B","C","D")
Score<-c(60,70,80,90)
Sex<-c("M","F","M","M")
One<-data.frame(ID,Name)
Two<-data.frame(Score,Sex)
相关文章