为什么阿里建议你不要使用Executors来创建线程池?

2020-06-05 00:00:00 执行 线程 工作 队列 状态

前言

我相信大家在项目中或多或少的都使用过线程,而线程是宝贵的资源,不能频繁的创建,应当给其他任务进行复用,所以就有了我们的线程池。

线程池的使用

你知道我们如何创建线程池吗?

这我当然知道了,JDK主要提供了三种创建线程池的方法

  1. Executors.newFixedThreadPool(int nThreads) : 创建固定线程数量的线程池

  2. Executors.newSingleThreadExecutor() : 创建单个线程的线程池

  3. Executors.newCachedThreadPool() : 创建一个"无限大小"的线程池

线程池如何使用

ExecutorService threadPool = Executors.newFixedThreadPool(5);

threadPool.execute(() -> {
  System.out.println("执行任务");
});

threadPool.shutdown();

线程池的原理

你给我讲讲线程池的原理呢?

线程池核心参数以及状态

上面说的创建线程池的方法实际上都是通过创建ThreadPoolExecutor这个类来实现的,所以我们直接看这个类的实现原理即可。
首先来看看它的构造方法

 public ThreadPoolExecutor(int corePoolSize,
       int maximumPoolSize,
       long keepAliveTime,
       TimeUnit unit,
       BlockingQueue<Runnable> workQueue,
       RejectedExecutionHandler handler)

先说下它这几个核心参数的含义

  • corePoolSize : 线程池核心线程数量

  • maximumPoolSize : 线程池大线程数量

  • keepAliveTime : 非核心线程的超时时长,当系统中非核心线程闲置时间超过keepAliveTime之后,则会被回收。如果ThreadPoolExecutor的allowCoreThreadTimeOut属性设置为true,则该参数也表示核心线程的超时时长

  • unit : 超时时长单位

  • workQueue : 线程池中的任务队列,该队列主要用来存储已经被提交但是尚未执行的任务

  • handler : 当线程池无法处理任务的时候的处理策略

当然只是知道这几个参数也没有什么太大的作用,我们还是要着眼全局来看ThreadPoolExecutor类。

首先来认识下线程池中定义的状态,它们一直贯穿在整个主体

// ctl存储了两个值,一个是线程池的状态,
// 另一个是活动线程数(workerCount)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, ));
private static final int COUNT_BITS = Integer.SIZE - 3;

// 线程池多允许2^29-1个(大概5亿)线程存在,
// 当然首先要你的系统能新建这么多个
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING    = -1 << COUNT_BITS;
private static final int SHUTDOWN   =   << COUNT_BITS;
private static final int STOP       =  1 << COUNT_BITS;
private static final int TIDYING    =  2 << COUNT_BITS;
private static final int TERMINATED =  3 << COUNT_BITS;

从上面的成员变量的定义我们可以知道,线程池多允许5亿个(2^29-1)个线程活动,那么为什么不是2^31-1呢?因为设计者觉得这个值已经够大了,如果将来觉得这是一个瓶颈的话,会把这个换成Long类型。

同时线程池这里也存在了五个状态,它们解决着线程池的生命周期。

  1. RUNNING : 运行状态。接受新的task并且处理队列中的task

  2. SHUTDOWN : 关闭状态(调用了shutdown方法)。不接受新的task,但是要处理队列中的task

  3. STOP : 停止状态(调用了shutdownNow方法)。不接受新的task,也不处理队列中的task,并且要中断正在处理的task

  4. TIDYING : 所有的task都已终止了,workerCount (活动终止状态,当执行 terminated() 后会更新为这个状态线程数) 为0,线程池进入该状态后会调用 terminated() 方法进入TERMINATED 状态

  5. TERMINATED : 终止状态,当执行 terminated() 后会更新为这个状态

状态流转图如下:

线程池状态

原理

我们知道当我们执行一个task的时候,调用的是execute方法

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    int c = ctl.get();
    // 1. 如果工作线程数小于核心线程数(corePoolSize),则创建一个工作线程执行任务
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }

    // 2. 如果当前是running状态,并且任务队列能够添加任务
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get();
        // 2.1 如果不处于running状态了(使用者可能调用了shutdown方法),
        // 则将刚才添加到任务队列的任务移除
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 2.2 如果当前没有工作线程,
       // 则新建一个工作线程来执行任务(任务已经被添加到了任务队列)
        else if (workerCountOf(recheck) == )
            addWorker(nullfalse);
    }

  // 3. 队列已经满了的情况下,则新启动一个工作线程来执行任务
    else if (!addWorker(command, false))
        reject(command);
}

而在addWorker方法中还存在有一些必要的判断逻辑,比如当前线程池是否是非running状态,队列是否为空等条件,当然主要的逻辑还是判断当前工作线程数量是否大于maximumPoolSize以及启动工作线程执行任务。

private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        for (;;) {
            int wc = workerCountOf(c);
            // 1. 判断当前工作线程是否满足条件
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 2. 增加工作线程数量
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
        }
    }

    // 3. 创建工作线程
    w = new Worker(firstTask);
    final Thread t = w.thread;
    workers.add(w);     
    if (workerAdded) {
        // 4. 运行工作线程
        t.start();
        workerStarted = true;
    }     
    return workerStarted;
}

所以,总结下线程池的工作流程如下:

  1. 提交一个任务,如果线程池中的工作线程数小于corePoolSize,则新建一个工作线程执行任务

  2. 如果线程池当前的工作线程已经等于了corePoolSize,则将新的任务放入到工作队列中正在执行

  3. 如果工作队列已经满了,并且工作线程数小于maximumPoolSize,则新建一个工作线程来执行任务

  4. 如果当前线程池中工作线程数已经达到了maximumPoolSize,而新的任务无法放入到任务队列中,则采用对应的策略进行相应的处理(默认是拒绝策略)

如果你觉得上面不好记,我给你讲个火锅店的故事你就更加明白了。

以前有个火锅店,叫做朱帅帅火锅,老板是个刚辞掉程序员工作出来创业的帅小伙子,火锅店不大,只能摆上10张桌子(corePoolSize),如果吃火锅的来得早就可以去店里面坐(店里有空调),来晚了,店里面坐满了,后面来的人就要排队了(workQueue)。
排队的人数越来越多,朱帅帅一看不是办法,就给外面摆了几张临时桌子(非核心工作线程),让客人在外面吃。如果店里面有人吃完了或者外面临时桌子吃完了就让排队的人去吃。后面时间晚了,没有排队的人了,老板就让人撤了外面的临时桌子,毕竟摆在外面也不太好,而且还怕城管来。如果生意特别好,又来了特别多的人,已经超出火锅店的服务能力了,就只能喊他们去别家了。

上面的故事,你要品,细细的品,后你会发现,代码来源于生活。

上面一直说到工作线程,工作线程到底是个什么鬼?其实工作线程指的就是我们的Worker类,它是ThreadPoolExecutor中的私有类

private final class Worker
    extends AbstractQueuedSynchronizer
    implements Runnable 
{

   // 运行worker的线程(new Thread(this))
    final Thread thread;

    // 需要执行的任务
    Runnable firstTask;

    Worker(Runnable firstTask) {
      this.firstTask = firstTask;
      this.thread = getThreadFactory().newThread(this);
  }
}

可以看到Woker不仅继承了AbstractQueuedSynchronizer(实现独占锁功能),还实现了Runnable接口。

实际上线程池中的每一个线程被封装成一个Worker对象,ThreadPool维护的其实就是一组Worker对象

Worker用自己作为task构造一个线程,同时把外层任务赋值给自己的task成员变量,相当于对task做了一个包装。

addWorker()方法中执行了worker.thread.start(),实际上执行的就是Worker的runWorker方法。

final void runWorker(Worker w) {

    // 1. 获取任务开始执行任务,如果获取不到任务,当前的worker就会被JVM回收
    while (task != null || (task = getTask()) != null) {
       task.run();
    }     
}

private Runnable getTask() {
    boolean timedOut = false

    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // 1. 判断线程池是否关闭
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }
        int wc = workerCountOf(c);

        // 2. 判断是否需要进行超时控制。
        // allowCoreThreadTimeOut默认是false,也就是核心线程不允许进行超时;
        // wc > corePoolSize,表示当前线程池中的工作线程数量大于核心线程数量;
        // 对于超过核心线程数量的这些线程,需要进行超时控制
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

        // 3. wc > maximumPoolSize的情况是因为可能在此方法执行阶段同时执行了setMaximumPoolSize方法;
        // timed && timedOut 如果为true,表示当前操作需要进行超时控制,并且上次从阻塞队列中获取任务发生了超时
        if ((wc > maximumPoolSize || (timed && timedOut))
            && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }

        // 4. timed如果为true,则通过阻塞队列的poll方法进行超时控制,
       //如果在keepAliveTime时间内没有获取到任务,则返回null。如果为false,则直接阻塞
        Runnable r = timed ?
            workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
            workQueue.take();
        if (r != null)
            return r;
        timedOut = true;

    }
}

上面的代码中尤其需要注意的是getTask()中的第3点,它的目的是控制线程池有效的工作线程数量。从之前的分析我们可以知道,如果当前线程池的工作线程数量超过了corePoolSize且小于maximumPoolSize,并且workQueue已满,则可以增加工作线程,但这时如果超时没有获取到任务,也就是timedOut为true的情况,说明workQueue已经为空了,也就说明了线程池中不需要那么多线程来执行任务了,可以把多于corePoolSize数量的线程销毁掉,保持线程数量在corePoolSize即可。

拒绝策略

你刚才说到拒绝策略,都有哪些拒绝策略呀?

主要有下面4种拒绝策略

  1. AbortPolicy : 始终抛出RejectedExecutionException

  2. CallerRunsPolicy : 如果线程池未关闭,则交给调用线程池的线程执行

  3. DiscardPolicy : 直接丢弃任务,啥也不做

  4. DiscardOldestPolicy : 丢弃队列里老的任务,然后将当前这个任务重新提交给线程池。

通过Executors创建的线程池不同之处

你给我说说你开头说的通过Executors创建的线程池三者有何不同吗?

newFixedThreadPool

固定线程数量的线程池,corePoolSize等于maximumPoolSize,采用的阻塞队列是LinkedBlockingQueue,是一个无界队列,当任务量突然很大,线程池来不及处理,就会将任务一直添加到队列中,就有可能导致内存溢出。

newSingleThreadExecutor

创建单个线程的线程池,corePoolSize = maximumPoolSize = 1,也采用的LinkedBlockingQueue这个无界队列,当任务量很大,线程池来不及处理,就有可能会导致内存溢出。

newCachedThreadPool

创建可缓存的线程池,corePoolSize = 1,maximumPoolSize = Interger.MAX_VALUE;但是使用的是SynousQueue,这个队列比较特殊,内部没有结构来存储任何元素,所以如果任务数很大,而创建的那个线程(corePoolSize=1)迟迟没有处理完成任务,就会一直创建线程来处理,也有OOM的可能。

cacheThreadPool中的cache其实指的就是SynousQueue,当往这个队列插入数据的时候,如果没有任务来取,插入这个过程会被阻塞。

你既然说了都有可能OOM,那么应该如何创建线程池呢?

实际使用中不建议通过Executors来创建线程池,而是通过 new ThreadPoolExecutor的方式来创建,而队列也不建议使用无界队列,而要使用有界队列,比如ArrayBlockingQueue。而拒绝策略这个就看你自己需求了(系统提供的如果不满足,就自己写一个)
同时对于核心线程数的设置也不是越大越好,只能说根据你的需求来设置这个值,一般来讲可以根据下面两点来进行合理配置

  1. 对于I/O密集型任务,可以将线程数设置大一点,比如 CPU个数 * 2

  2. 对于计算性任务(在内存中进行大量运算),可以将线程数设置小一点, 比如就等于 CPU的个数

当然啦,这个考虑是很多方面的,不仅仅和程序有关,还和硬件等资源有关,总之就是在测试的时候多多调试。

大家不要以为我上面说的是句废话,请你自信一点,把以为去掉。


相关文章