蟒蛇Pandas - 按天分组并计算每一天

2022-01-11 00:00:00 python python-3.x pandas time-series

问题描述

我是 pandas 的新手,现在我不知道如何安排我的时间系列,看看吧:

I am new on pandas and for now i don't get how to arrange my time serie, take a look at it :

date & time of connection
19/06/2017 12:39
19/06/2017 12:40
19/06/2017 13:11
20/06/2017 12:02
20/06/2017 12:04
21/06/2017 09:32
21/06/2017 18:23
21/06/2017 18:51
21/06/2017 19:08
21/06/2017 19:50
22/06/2017 13:22
22/06/2017 13:41
22/06/2017 18:01
23/06/2017 16:18
23/06/2017 17:00
23/06/2017 19:25
23/06/2017 20:58
23/06/2017 21:03
23/06/2017 21:05

这是 130 k 原始数据集的样本,我试过:df.groupby('连接的日期和时间')['日期&连接时间'].apply(list)

This is a sample of a dataset of 130 k raws,I tried : df.groupby('date & time of connection')['date & time of connection'].apply(list)

我猜还不够

我想我应该:

  • 创建一个索引从 dd/mm/yyyy 到 dd/mm/yyyy 的字典
  • 将连接的日期和时间"类型 dateTime 转换为 Date
  • 连接日期和时间"的分组和计数日期
  • 把我数到的数字放进字典里?

你觉得我的逻辑怎么样?你知道一些tutos吗?非常感谢

What do you think about my logic ? Do you know some tutos ? Thank you very much


解决方案

你可以使用dt.floor 用于转换为 dates,然后转换为 value_countsgroupby大小:

You can use dt.floor for convert to dates and then value_counts or groupby with size:

df = (pd.to_datetime(df['date & time of connection'])
       .dt.floor('d')
       .value_counts()
       .rename_axis('date')
       .reset_index(name='count'))
print (df)
        date  count
0 2017-06-23      6
1 2017-06-21      5
2 2017-06-19      3
3 2017-06-22      3
4 2017-06-20      2

或者:

s = pd.to_datetime(df['date & time of connection'])
df = s.groupby(s.dt.floor('d')).size().reset_index(name='count')
print (df)
  date & time of connection  count
0                2017-06-19      3
1                2017-06-20      2
2                2017-06-21      5
3                2017-06-22      3
4                2017-06-23      6

时间安排:

np.random.seed(1542)

N = 220000
a = np.unique(np.random.randint(N, size=int(N/2)))
df = pd.DataFrame(pd.date_range('2000-01-01', freq='37T', periods=N)).drop(a)
df.columns = ['date & time of connection']
df['date & time of connection'] = df['date & time of connection'].dt.strftime('%d/%m/%Y %H:%M:%S')
print (df.head()) 

In [193]: %%timeit
     ...: df['date & time of connection']=pd.to_datetime(df['date & time of connection'])
     ...: df1 = df.groupby(by=df['date & time of connection'].dt.date).count()
     ...: 
539 ms ± 45.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

In [194]: %%timeit
     ...: df1 = (pd.to_datetime(df['date & time of connection'])
     ...:        .dt.floor('d')
     ...:        .value_counts()
     ...:        .rename_axis('date')
     ...:        .reset_index(name='count'))
     ...: 
12.4 ms ± 350 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In [195]: %%timeit
     ...: s = pd.to_datetime(df['date & time of connection'])
     ...: df2 = s.groupby(s.dt.floor('d')).size().reset_index(name='count')
     ...: 
17.7 ms ± 140 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

相关文章