分布式学习(5) ---- 初识消息系统kafka

2020-05-25 00:00:00 数据 消息 分区 消费者 生产者
消息系统在分布式应用中有着不可或缺的地位,像是成产消费数据解耦,缓存未处理的消息等等。

那为什么不学习用Java写的ActiveMQ或RabbitMQ呢?

因为我看过卡夫卡写的变形记。

简单原理图


分布式消息系统就是生产者集群和消费者集群分离,通过中间的一个消息系统进行通信。

生产者异步生产东西,不用管消费者的反馈,消费者也不用死等着生产者生产,等有东西了来拿就好。就像是母鸡下蛋,母鸡(生产者)直接把蛋(消息)下在筐里,人(消费者)不用在一边等着,只用隔段时间来拿就行了。

概念介绍

producer

Kafka系统中的生产者,用于产生数据并发送给broker进行存储。由于需要与broker中的分区保持socket连接,因此需要在zk中维护生产者与分区broker的对应关系。同一个topic下的数据,会以某种负载均衡的方式发送到不同的分区中。

broker

Broker可以当做Kafka中的存储节点,数据按照topic组织,按照某种负载均衡方式分配到不同的分区中。一个Topic由多个分区组成,每个分区可以设置备份数量。分区由一个leader+多个followers组成,生产者直接与leader进行沟通,leader接收消息后,其他的followers会同步这个消息。所有的follwers同步消息后,该消息才会成为可消费的状态。

Broker中Topic与分区,分区与生产者,分区之间的选举备份等等信息都需要zookeeper进行协调。

consumer

Consumer是Kafka中的消费者,通常以组的形式存在,一个Group会包含多个Consumer。每个组对应一个Topic,该Topic内的分区只能对应一个消费者,也就是如果消费者很多的情况下,会出现有的消费者消费不到数据;如果消费者很少的情况下,会有消费者同时消费多个分区的数据。

Kafka仅仅会保证一个分区的消息的消费是有序的,多个分区并不保证有序性。

为了保证数据消费的可靠性,Kakka提供了几种消费的机制:

  • 1 at most once,即消费数据后,保存offset,就再也取不到这个数据了。
  • 2 at least once,即消费数据后,保存offset,如果保存出错,下次可能还会取到该数据

在Kafka中offset是由consumer维护的(实际可以由zookeeper来完成)。这种机制有两个好处,

  • 一个是可以依据consumer的能力来消费数据,避免产生消费数据的压力;
  • 另一个就是可以自定义fetch消费的数据数目,可以一次读取1条,也可以1次读取100条。

topic

Kafka中的数据的主题,所有的操作(如消息的存储和读取\消费)都是依据topic完成。

partition

每个Topic由多个分区组成,每个分区内部的数据保证了有序性,即是按照时间序列,append到分区的尾部。分区是有固定大小的,容量不够时,会创建新的分区。Kafka在一定时间内会定期清理过期的文件。

这种连续性的文件存储,一方面有效的利用磁盘的线性存取;另一方面减轻了内存的压力。

zookeeper

在Kafka中很多节点的调度以及资源的分配,都要依赖于zookeeper来完成。

  • 1 Broker的注册,保存Broker的IP以及端口;
  • 2 Topic注册,管理broker中Topic的分区以及分布情况
  • 3 Broker的负载均衡,讲Topic动态的分配到broker中,通过topic的分布以及broker的负载判断
  • 4 消费者,每个分区的消息仅发送给一个消费者
  • 5 消费者与分区的对应关系,存储在zk中
  • 6 消费者负载均衡,一旦消费者增加或者减少,都会触发消费者的负载均衡
  • 7 消费者的offset,High level中由zk维护offset的信息;Low Level中由自己维护offset

Demo实现

由于我租的乞丐版服务器,开伪集群有一些困难,所以以下demo均在单机上完成。

首先来看一下命令行实现简易demo:

  • 启动kafka服务

bin/kafka-server-start.sh config/server.properties &

相关文章