Elasticsearch分布式一致性原理剖析(二)-Meta篇
本文于云栖社区(Elasticsearch分布式一致性原理剖析(二)-Meta篇-博客-云栖社区-阿里云),由原作者转载。
前言
“Elasticsearch分布式一致性原理剖析”系列将会对Elasticsearch的分布式一致性原理进行详细的剖析,介绍其实现方式、原理以及其存在的问题等(基于6.2版本)。前一篇的内容包括了ES的集群组成、节点发现与Master选举、错误检测与集群扩缩容等。本篇将在前一篇的基础上,重点分析ES中meta更新的一致性问题,为了便于读者理解 ,本文还介绍了Master管理集群的方式、meta组成、存储方式等等。目录如下:
- Master如何管理集群
- Meta组成、存储和恢复
- ClusterState的更新流程
- 如何解决当前的一致性问题
- 小结
Master如何管理集群
在上一篇文章中,我们介绍了ES集群的组成,如何发现节点,选举Master等。那么在选举出Master之后,Master如何管理集群呢?比如以下问题:
- Master如何处理新建或删除Index?
- Master如何对Shard进行重新调度,实现负载均衡?
既然要管理集群,那么Master节点必然需要以某种方式通知其他节点,从而让其他节点执行相应的动作,来完成某些事情。比如建立一个新的Index就需要将其Shard分配在某些节点上,在这些节点上需要创建出对应Shard的目录,并在内存中创建对应Shard的一些结构等。
在ES中,Master节点是通过发布ClusterState来通知其他节点的。Master会将新的ClusterState发布给其他的所有节点,当节点收到新的ClusterState后,会把新的ClusterState发给相关的各个模块,各个模块根据新的ClusterState判断是否要做什么事情,比如创建Shard等。即这是一种通过Meta数据来驱动各个模块工作的方式。
在Master进行Meta变更并通知所有节点的过程中,需要考虑Meta变更的一致性问题,假如这个过程中Master挂掉了,那么可能只有部分节点按照新的Meta执行了操作。当选举出新的Master后,需要保证所有节点都要按照新的Meta执行操作,不能回退,因为已经有节点按照新的Meta执行操作了,再回退就会导致不一致。
ES中只要新Meta在一个节点上被commit,那么就会开始执行相应的操作。因此我们要保证一旦新Meta在某个节点上被commit,此后无论谁是master,都要基于这个commit来产生更新的meta,否则就可能产生不一致。本文会分析ES处理这一问题的策略和存在的问题。
Meta的组成、存储和恢复
在介绍Meta更新流程前,我们先介绍一下ES中Meta的组成、存储方式和恢复方式,不关心这部分内容的读者可以略过本节。
1. Meta:ClusterState、MetaData、IndexMetaData
Meta是用来描述数据的数据。在ES中,Index的mapping结构、配置、持久化状态等就属于meta数据,集群的一些配置信息也属于meta。这类meta数据非常重要,假如记录某个index的meta数据丢失了,那么集群就认为这个index不再存在了。ES中的meta数据只能由master进行更新,master相当于是集群的大脑。
ClusterState
集群中的每个节点都会在内存中维护一个当前的ClusterState,表示当前集群的各种状态。ClusterState中包含一个MetaData的结构,MetaData中存储的内容更符合meta的特征,而且需要持久化的信息都在MetaData中,此外的一些变量可以认为是一些临时状态,是集群运行中动态构建出来的。
ClusterState内容包括:
long version: 当前版本号,每次更新加1
String stateUUID:该state对应的id
RoutingTable routingTable:所有index的路由表
DiscoveryNodes nodes:当前集群节点
MetaData metaData:集群的meta数据
ClusterBlocks blocks:用于屏蔽某些操作
ImmutableOpenMap<String, Custom> customs: 自定义配置
ClusterName clusterName:集群名
相关文章