从 10 秒到 2 秒!ElasticSearch 性能调优
ElasticSearch性能调优
大家好,我是皮蛋二哥。
“ELK”是ElasticSearch、Logstash、Kibana三门技术的简称。如今ELK技术栈在互联网行业数据开发领域使用率越来越高,做过数据收集、数据开发、数据存储的同学相信对这个简称并不陌生,而ElasticSearch(以下简称ES)则在ELK栈中占着举足轻重的地位。
前一段时间,我亲身参与了一个ES集群的调优,今天把我所了解与用到的调优方法与大家分享,如有错误,请大家包涵与指正。
系统层面的调优
系统层面的调优主要是内存的设定与避免交换内存。
ES安装后默认设置的堆内存是1GB,这很明显是不够的,那么接下来就会有一个问题出现:我们要设置多少内存给ES呢?
其实这是要看我们集群节点的内存大小,还取决于我们是否在服务器节点上还是否要部署其他服务。
如果内存相对很大,如64G及以上,并且我们不在ES集群上部署其他服务,那么我建议ES内存可以设置为31G-32G,因为这里有一个32G性能瓶颈问题,直白的说就是即使你给了ES集群大于32G的内存,其性能也不一定会更加优良,甚至会不如设置为31G-32G时候的性能。
以我调优的集群为例,我所调优的服务器节点内存为64G,服务器节点上也基本不跑其他服务,所以我把ES集群内存大小设置为了31G,以充分发挥集群性能。 设置ES集群内存的时候,还有一点就是确保堆内存小值(Xms)与大值(Xmx)的大小是相同的,防止程序在运行时改变堆内存大小,这是一个很耗系统资源的过程。
还有一点就是避免交换内存,可以在配置文件中对内存进行锁定,以避免交换内存(也可以在操作系统层面进行关闭内存交换)。对应的参数: bootstrap.mlockall: true
分片与副本
分片(shard):ES是一个分布式的搜索引擎, 索引通常都会分解成不同部分, 分布在不同节点的部分数据就是分片。ES自动管理和组织分片, 并在必要的时候对分片数据进行再平衡分配, 所以用户基本上不用担心分片的处理细节。创建索引时默认的分片数为5个,并且一旦创建不能更改。
副本(replica):ES默认创建一份副本,就是说在5个主分片的基础上,每个主分片都相应的有一个副本分片。额外的副本有利有弊,有副本可以有更强的故障恢复能力,但也占了相应副本倍数的磁盘空间。
那我们在创建索引的时候,应该创建多少个分片与副本数呢?
对于副本数,比较好确定,可以根据我们集群节点的多少与我们的存储空间决定,我们的集群服务器多,并且有足够大多存储空间,可以多设置副本数,一般是1-3个副本数,如果集群服务器相对较少并且存储空间没有那么宽松,则可以只设定一份副本以保证容灾(副本数可以动态调整)。
对于分片数,是比较难确定的。因为一个索引分片数一旦确定,就不能更改,所以我们在创建索引前,要充分的考虑到,以后我们创建的索引所存储的数据量,否则创建了不合适的分片数,会对我们的性能造成很大的影响。 对于分片数的大小,业界一致认为分片数的多少与内存挂钩,认为1GB堆内存对应20-25个分片,而一个分片的大小不要超过50G,这样的配置有助于集群的健康。但是我个人认为这样的配置方法过于死板,我个人在调优ES集群的过程中,根据总数据量的大小,设定了相应的分片,保证每一个分片的大小没有超过50G(大概在40G左右),但是相比之前的分片数查询起来,效果并不明显。之后又尝试了增加分片数,发现分片数增多之后,查询速度有了明显的提升,每一个分片的数据量控制在10G左右。 查询大量小分片使得每个分片处理数据速度更快了,那是不是分片数越多,我们的查询就越快,ES性能就越好呢?其实也不是,因为在查询过程中,有一个分片合并的过程,如果分片数不断的增加,合并的时间则会增加,而且随着更多的任务需要按顺序排队和处理,更多的小分片不一定要比查询较小数量的更大的分片更快。如果有多个并发查询,则有很多小碎片也会降低查询吞吐量。
如果现在你的场景是分片数不合适了,但是又不知道如何调整,那么有一个好的解决方法就是按照时间创建索引,然后进行通配查询。如果每天的数据量很大,则可以按天创建索引,如果是一个月积累起来导致数据量很大,则可以一个月创建一个索引。如果要对现有索引进行重新分片,则需要重建索引,我会在文章的后总结重建索引的过程。
参数调优
下面我会介绍一些ES关键参数的调优。
有很多场景是,我们的ES集群占用了多大的cpu使用率,该如何调节呢。cpu使用率高,有可能是写入导致的,也有可能是查询导致的,那要怎么查看呢? 可以先通过GET _nodes/{node}/hot_threads
查看线程栈,查看是哪个线程占用cpu高,如果是elasticsearch[{node}][search][T#10]
则是查询导致的,如果是elasticsearch[{node}][bulk][T#1]
则是数据写入导致的。 我在实际调优中,cpu使用率很高,如果不是SSD,建议把index.merge.scheduler.max_thread_count: 1
索引merge大线程数设置为1个,该参数可以有效调节写入的性能。因为在存储介质上并发写,由于寻址的原因,写入性能不会提升,只会降低。
还有几个重要参数可以进行设置,各位同学可以视自己的集群情况与数据情况而定。
index.refresh_interval
:这个参数的意思是数据写入后几秒可以被搜索到,默认是1s。每次索引的refresh会产生一个新的lucene段,这会导致频繁的合并行为,如果业务需求对实时性要求没那么高,可以将此参数调大,实际调优告诉我,该参数确实很给力,cpu使用率直线下降。
indices.memory.index_buffer_size
:如果我们要进行非常重的高并发写入操作,那么好将indices.memory.index_buffer_size
调大一些,index buffer的大小是所有的shard公用的,一般建议(看的大牛博客),对于每个shard来说,多给512mb,因为再大性能就没什么提升了。ES会将这个设置作为每个shard共享的index buffer,那些特别活跃的shard会更多的使用这个buffer。默认这个参数的值是10%,也就是jvm heap的10%。
translog
:ES为了保证数据不丢失,每次index、bulk、delete、update完成的时候,一定会触发刷新translog到磁盘上。在提高数据安全性的同时当然也降低了一点性能。如果你不在意这点可能性,还是希望性能优先,可以设置如下参数:
"index.translog": {
"sync_interval": "120s", --sync间隔调高
"durability": "async", -– 异步更新
"flush_threshold_size":"1g" --log文件大小
}
相关文章