Pandas - 有条件的删除重复项

2022-01-10 00:00:00 python-3.x pandas duplicates

问题描述

我有一个适用于 Python 3.6x 的 Pandas 0.19.2 数据框,如下所示.我想基于条件逻辑使用相同的 Id drop_duplicates().

I have a Pandas 0.19.2 dataframe for Python 3.6x as below. I want to drop_duplicates() with the same Id based on a conditional logic.

import pandas as pd
import numpy as np
np.random.seed(1)
df = pd.DataFrame({'Id':[1,2,3,4,3,2,6,7,1,8],
              'Name':['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K'],
              'Size':np.random.rand(10),
              'Age':[19, 25, 22, 31, 43, 23, 44, 20, 51, 31]})

根据我在下面描述的逻辑,实现这一目标的最有效(如果可能的话)方法是什么?

What would be the most efficient (if possible vectorised) way to achieve this based on the logic I describe below?

1) 在删除重复项之前,将重复的 Id 条目的 Size 相加.

1) Before dropping duplicates, sum the Size of duplicate Id entries.

2) 删除相同 Id 记录的重复记录,保留具有较大 Age 记录的记录.

2) Drop duplicates for same Id records, keeping the one that has a larger Age.

期望的输出是:

   Age  Id Name      Size
1   25   2    B  0.812662
3   31   4    D  0.302333
4   43   3    E  0.146870
6   44   6    G  0.186260
7   20   7    H  0.345561
8   51   1    I  0.813790
9   31   8    K  0.538817


解决方案

使用GroupBy.transform 用于与 sort_valuesdrop_duplicates 用于删除重复:

Use GroupBy.transform for aggregated values with same size as original DataFrame with sort_values and drop_duplicates for remove dupes:

df['Size'] = df.groupby('Id')['Size'].transform('sum')
df = df.sort_values('Age').drop_duplicates('Id', keep='last').sort_index()
print (df)
   Id Name      Size  Age
1   2    B  0.812663   25
3   4    D  0.302333   31
4   3    E  0.146870   43
6   6    G  0.186260   44
7   7    H  0.345561   20
8   1    I  0.813789   51
9   8    K  0.538817   31

相关文章