如何根据 pandas 滚动窗口中的多列查找重复项?
问题描述
样本数据
{"transaction": {"merchant": "merchantA", "amount": 20, "time": "2019-02-13T10:00:00.000Z"}}
{"transaction": {"merchant": "merchantB", "amount": 90, "time": "2019-02-13T11:00:01.000Z"}}
{"transaction": {"merchant": "merchantC", "amount": 90, "time": "2019-02-13T11:00:10.000Z"}}
{"transaction": {"merchant": "merchantD", "amount": 90, "time": "2019-02-13T11:00:20.000Z"}}
{"transaction": {"merchant": "merchantE", "amount": 90, "time": "2019-02-13T11:01:30.000Z"}}
{"transaction": {"merchant": "merchantE", "amount": 90, "time": "2019-02-13T11:02:30.000Z"}}
.
.
我有一些这样的代码
df = pd.DataFrame()
for line in sys.stdin:
data = json.loads(line)
# df1 = pd.DataFrame(data["transaction"], index=[len(df.index)])
df1 = pd.DataFrame(data["transaction"], index=[data['transaction']['time']])
df1['time'] = pd.to_datetime(df1['time'])
df = df.append(df1)
# df['count'] = df.rolling('2min', on='time', min_periods=1)['amount'].count()
print(df)
print(len(df[df.merchant.eq(data['transaction']['merchant']) & df.amount.eq(data['transaction']['amount'])].index))
电流输出
2019-02-13T10:00:00.000Z merchantA 20 2019-02-13 10:00:00
2019-02-13T11:00:01.000Z merchantB 90 2019-02-13 11:00:01
2019-02-13T11:00:10.000Z merchantC 90 2019-02-13 11:00:10
2019-02-13T11:00:20.000Z merchantD 90 2019-02-13 11:00:20
2019-02-13T11:01:30.000Z merchantE 90 2019-02-13 11:01:30
2019-02-13T11:02:30.000Z merchantE 90 2019-02-13 11:02:30
2
预期输出
2019-02-13T10:00:00.000Z merchantA 20 2019-02-13 10:00:00
2019-02-13T11:00:01.000Z merchantB 90 2019-02-13 11:00:01
2019-02-13T11:00:10.000Z merchantC 90 2019-02-13 11:00:10
2019-02-13T11:00:20.000Z merchantD 90 2019-02-13 11:00:20
2019-02-13T11:01:30.000Z merchantE 90 2019-02-13 11:01:30
由于数据正在流式传输.我想检查重复记录(其商家和金额值相同)是否在两分钟内到达,所以我将其丢弃并且不对其进行处理.将其打印为副本.
As the data is streaming. I want to check if a duplicate record(whose merchant and amount value are same) arrives withing two minutes so I discard it as and do no processing on it. print it as a duplicate.
我必须对索引压缩或 groupby 做些什么吗?但是然后如何等同于多列.或者两列上有一些滚动条件,但找不到任何方法.
Do I have to do something with index zipping or groupby? but then how to equate of multiple columns. Or some rolling condition on two columns but can't find anything how to do it.
我在这里错过了什么?
谢谢
编辑
#dup = df[df.duplicated(subset=['merchant', 'amount'], keep=False)]
res = df.loc[(df.merchant == data['transaction']['merchant']) & (df.amount == data['transaction']['amount'])]
# res['timediff'] = pd.to_timedelta((data['transaction']['time'] - res['time']), unit='T')
res['timediff'] = (data['transaction']['time'] - res['time'])
if len(res.index) >1:
print(res)
所以我尝试这样的事情,如果结果小于 120 秒,我可以处理它.但生成的df目前以
so im trying something like this and if the result is less than 120 seconds i can process it. But the resulting df in currently in the form of
merchant amount time concat timediff
2019-02-13 11:03:00 merchantF 10 2019-02-13 11:03:00 merchantF10 -1 days +23:59:20
2019-02-13 11:02:20 merchantF 10 2019-02-13 11:02:20 merchantF10 00:00:00
2019-02-13 11:01:30 merchantE 10 2019-02-13 11:01:30 merchantE10 00:01:00
2019-02-13 11:02:00 merchantE 10 2019-02-13 11:02:00 merchantE10 00:00:30
2019-02-13 11:02:30 merchantE 10 2019-02-13 11:02:30 merchantE10 00:00:00
-1 天 +23:59:20 这种格式我觉得可以用绝对值代替?
-1 days +23:59:20 this format I think can be delt with taking Absolute value?
如何将时间转换为可以与 120 秒比较的格式?pd.to_deltatime() 对我不起作用,或者我使用错误.
how can I convert the time in a format that I can compare it with 120 seconds? pd.to_deltatime() didn't work for me or maybe I'm using it wrong.
解决方案
所以我让它工作但不是滚动窗口,因为它不支持字符串类型.该功能也在 Pandas Repo 上报告和请求.
So i made it work but not with rolling windows as it doesn't support string type. the feature is reported and requested on Pandas Repo as well.
我的问题解决方案片段:
My solution snippet to the problem:
if len(df.index) > 0:
res = df.loc[(df.merchant == data['transaction']['merchant']) & (df.amount == data['transaction']['amount'])]
res['timediff'] = (data['transaction']['time'] - res['time']).dt.total_seconds().abs() <= 120
if res.timediff.any():
continue
df = df.append(df1)
print(df)
样本数据:
{"transaction": {"merchant": "merchantA", "amount": 20, "time": "2019-02-13T10:00:00.000Z"}}
{"transaction": {"merchant": "merchantB", "amount": 90, "time": "2019-02-13T11:00:01.000Z"}}
{"transaction": {"merchant": "merchantC", "amount": 10, "time": "2019-02-13T11:00:10.000Z"}}
{"transaction": {"merchant": "merchantD", "amount": 10, "time": "2019-02-13T11:00:20.000Z"}}
{"transaction": {"merchant": "merchantE", "amount": 10, "time": "2019-02-13T11:01:30.000Z"}}
{"transaction": {"merchant": "merchantF", "amount": 10, "time": "2019-02-13T11:03:00.000Z"}}
{"transaction": {"merchant": "merchantE", "amount": 10, "time": "2019-02-13T11:02:00.000Z"}}
{"transaction": {"merchant": "merchantF", "amount": 10, "time": "2019-02-13T11:02:20.000Z"}}
{"transaction": {"merchant": "merchantE", "amount": 10, "time": "2019-02-13T11:02:30.000Z"}}
{"transaction": {"merchant": "merchantF", "amount": 10, "time": "2019-02-13T11:05:20.000Z"}}
{"transaction": {"merchant": "merchantE", "amount": 10, "time": "2019-02-13T11:00:30.000Z"}}
输出:
merchant amount time
2019-02-13 10:00:00 merchantA 20 2019-02-13 10:00:00
2019-02-13 11:00:01 merchantB 90 2019-02-13 11:00:01
2019-02-13 11:00:10 merchantC 10 2019-02-13 11:00:10
2019-02-13 11:00:20 merchantD 10 2019-02-13 11:00:20
2019-02-13 11:01:30 merchantE 10 2019-02-13 11:01:30
2019-02-13 11:03:00 merchantF 10 2019-02-13 11:03:00
2019-02-13 11:05:20 merchantF 10 2019-02-13 11:05:20
相关文章