从 Pandas 数据框中删除只有某些列具有相同值的重复行

2022-01-10 00:00:00 python pandas dataframe duplicates

问题描述

我有一个熊猫数据框如下:

I have a pandas dataframe as follows:

A   B   C
1   2   x
1   2   y
3   4   z
3   5   x

我希望只剩下 1 行在特定列中共享相同值的行.在上面的示例中,我的意思是列 A 和 B.换句话说,如果列 A 和 B 的值在数据框中多次出现,则应该只保留一行(哪一行无关紧要).

I want that only 1 row remains of rows that share the same values in specific columns. In the example above I mean columns A and B. In other words, if the values of columns A and B occur more than once in the dataframe, only one row should remain (which one does not matter).

FWIW:所谓重复行的最大数量(即列A和B相同)为2.

FWIW: the maximum number of so called duplicate rows (that is, where column A and B are the same) is 2.

结果应该是这样的:

A   B   C
1   2   x
3   4   z
3   5   x

A   B   C
1   2   y
3   4   z
3   5   x


解决方案

使用 drop_duplicates 和参数 subset,为了只保留最后重复的行添加 keep='last':p>

Use drop_duplicates with parameter subset, for keeping only last duplicated rows add keep='last':

df1 = df.drop_duplicates(subset=['A','B'])
#same as
#df1 = df.drop_duplicates(subset=['A','B'], keep='first')
print (df1)
   A  B  C
0  1  2  x
2  3  4  z
3  3  5  x

<小时>

df2 = df.drop_duplicates(subset=['A','B'], keep='last')
print (df2)
   A  B  C
1  1  2  y
2  3  4  z
3  3  5  x

相关文章