在 python 中将图像划分为 5x5 块并计算每个块的直方图
问题描述
使用 Python,我必须:
Using Python, I have to:
- 将
Test_Image
和Reference_image
分成 5x5 块, - 计算每个块的直方图,并将其与另一个图像中的相同块进行比较.
例如:image1(1,1)
和image2(1,1)
. - 比较两张图片的相似度(应该是变换不变的).
- Divide a
Test_Image
andReference_image
into 5x5 blocks, - Compute a histogram for each block, and compare it with the same block in the other image.
For Example:image1(1,1)
withimage2(1,1)
. - Compare the similarity between two images (should be transform invariant).
到目前为止,我已经使用 hist=numpy.histogram(image,bins=256)
So far, I have calculated the histogram of the whole image using hist=numpy.histogram(image,bins=256)
我想分割图像,然后计算所有这些块的直方图.我还想使用 Bhattacharya 的系数来衡量相似度.
I want to divide an image, and later compute the histogram for all those blocks . I also want to use Bhattacharya's coefficient to measure the similarity.
谁能指导我如何通过这个?在此先感谢:)
Can anyone guide me with how to go through this one? Thanks in advance :)
解决方案
不知道是不是你要找的这样的东西,这是蛮力版本.它可能很慢.但它完成了工作但是,您必须决定如何处理边界.这将不包括边界,除非窗口完全适合
Not sure if it is something like this you are looking for, This is the brute-force version.and it's probably quite slow.but it does the job You have to decide what to do with the boundaries though. This will not include the boundary unless the window fits exactly
import numpy as numpy
grey_levels = 256
# Generate a test image
test_image = numpy.random.randint(0,grey_levels, size=(11,11))
# Define the window size
windowsize_r = 5
windowsize_c = 5
# Crop out the window and calculate the histogram
for r in range(0,test_image.shape[0] - windowsize_r, windowsize_r):
for c in range(0,test_image.shape[1] - windowsize_c, windowsize_c):
window = test_image[r:r+windowsize_r,c:c+windowsize_c]
hist = numpy.histogram(window,bins=grey_levels)
下面是结果,完整的图像在最后.r,c 代表窗口的左上角
Below is the result and the full image is at the end. r,c represents the topleft corner of the window
r=0,c=0
[[ 63 173 131 205 239]
[106 37 156 48 81]
[ 85 85 119 60 228]
[236 79 247 1 206]
[ 97 50 117 96 206]]
r=0,c=5
[[108 241 155 214 183]
[202 2 236 183 225]
[214 141 1 185 115]
[ 4 234 249 95 67]
[232 217 116 211 24]]
r=5,c=0
[[179 155 41 47 190]
[159 69 211 41 92]
[ 64 184 187 104 245]
[190 199 71 228 166]
[117 56 92 5 186]]
r=5,c=5
[[ 68 6 69 63 242]
[213 133 139 59 44]
[236 69 148 196 215]
[ 41 228 198 115 107]
[109 236 191 48 53]]
[[ 63 173 131 205 239 108 241 155 214 183 42]
[106 37 156 48 81 202 2 236 183 225 4]
[ 85 85 119 60 228 214 141 1 185 115 80]
[236 79 247 1 206 4 234 249 95 67 203]
[ 97 50 117 96 206 232 217 116 211 24 242]
[179 155 41 47 190 68 6 69 63 242 162]
[159 69 211 41 92 213 133 139 59 44 196]
[ 64 184 187 104 245 236 69 148 196 215 91]
[190 199 71 228 166 41 228 198 115 107 82]
[117 56 92 5 186 109 236 191 48 53 65]
[177 170 114 163 101 54 80 25 112 35 85]]
相关文章