PySpark - 在数据框中求和一列并将结果返回为 int
问题描述
我有一个带有一列数字的 pyspark 数据框.我需要对该列求和,然后将结果返回为 python 变量中的 int.
I have a pyspark dataframe with a column of numbers. I need to sum that column and then have the result return as an int in a python variable.
df = spark.createDataFrame([("A", 20), ("B", 30), ("D", 80)],["Letter", "Number"])
我执行以下操作来对列求和.
I do the following to sum the column.
df.groupBy().sum()
但我得到了一个数据框.
But I get a dataframe back.
+-----------+
|sum(Number)|
+-----------+
| 130|
+-----------+
我会将 130 作为存储在变量中的 int 返回,以便在程序中的其他位置使用.
I would 130 returned as an int stored in a variable to be used else where in the program.
result = 130
解决方案
最简单的方法真的:
df.groupBy().sum().collect()
但是操作很慢:避免groupByKey,你应该使用RDD和reduceByKey:
But it is very slow operation: Avoid groupByKey, you should use RDD and reduceByKey:
df.rdd.map(lambda x: (1,x[1])).reduceByKey(lambda x,y: x + y).collect()[0][1]
我尝试了更大的数据集并测量了处理时间:
I tried on a bigger dataset and i measured the processing time:
RDD 和 ReduceByKey:2.23 秒
RDD and ReduceByKey : 2.23 s
GroupByKey:30.5 秒
GroupByKey: 30.5 s
相关文章