如何检查浮点值是否为整数

2022-01-09 00:00:00 python floating-point

问题描述

我试图找到最大的立方根,它是一个整数,小于 12,000.

I am trying to find the largest cube root that is a whole number, that is less than 12,000.

processing = True
n = 12000
while processing:
    n -= 1
    if n ** (1/3) == #checks to see if this has decimals or not

我不知道如何检查它是否是一个整数!我可以将其转换为字符串,然后使用索引来检查最终值并查看它们是否为零,但这似乎相当麻烦.有没有更简单的方法?

I am not sure how to check if it is a whole number or not though! I could convert it to a string then use indexing to check the end values and see whether they are zero or not, that seems rather cumbersome though. Is there a simpler way?


解决方案

要检查浮点值是否为整数,请使用 float.is_integer() 方法:

To check if a float value is a whole number, use the float.is_integer() method:

>>> (1.0).is_integer()
True
>>> (1.555).is_integer()
False

该方法在 Python 2.6 中被添加到 float 类型中.

The method was added to the float type in Python 2.6.

考虑到在 Python 2 中,1/30(整数操作数的地板除法!),并且浮点运算可能不精确(a float 是使用二进制分数的近似值,不是精确的实数).但是稍微调整一下你的循环会给出:

Take into account that in Python 2, 1/3 is 0 (floor division for integer operands!), and that floating point arithmetic can be imprecise (a float is an approximation using binary fractions, not a precise real number). But adjusting your loop a little this gives:

>>> for n in range(12000, -1, -1):
...     if (n ** (1.0/3)).is_integer():
...         print n
... 
27
8
1
0

这意味着任何超过 3 的立方(包括 10648)由于上述不精确性而被遗漏:

which means that anything over 3 cubed, (including 10648) was missed out due to the aforementioned imprecision:

>>> (4**3) ** (1.0/3)
3.9999999999999996
>>> 10648 ** (1.0/3)
21.999999999999996

您必须检查数字 close 来代替整数,或者不使用 float() 来查找您的数字.就像向下取整 12000 的立方根:

You'd have to check for numbers close to the whole number instead, or not use float() to find your number. Like rounding down the cube root of 12000:

>>> int(12000 ** (1.0/3))
22
>>> 22 ** 3
10648

如果您使用的是 Python 3.5 或更新版本,则可以使用 math.isclose() 函数 查看浮点值是否在可配置的边距内:

If you are using Python 3.5 or newer, you can use the math.isclose() function to see if a floating point value is within a configurable margin:

>>> from math import isclose
>>> isclose((4**3) ** (1.0/3), 4)
True
>>> isclose(10648 ** (1.0/3), 22)
True

对于旧版本,该函数的简单实现(跳过错误检查并忽略无穷大和 NaN)为 :

For older versions, the naive implementation of that function (skipping error checking and ignoring infinity and NaN) as mentioned in PEP485:

def isclose(a, b, rel_tol=1e-9, abs_tol=0.0):
    return abs(a - b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)

相关文章