如何更快地基于多个条件合并2个 pandas 大 pandas
问题描述
我有两个数据帧:
df1:
RB BeginDate EndDate Valindex0
0 00 19000100 19811231 45
1 00 19820100 19841299 47
2 00 19850100 20010699 50
3 00 20010700 99999999 39
df2:
RB IssueDate gs
0 L3 19990201 8
1 00 19820101 G
2 48 19820101 G
3 50 19820101 G
4 50 19820101 G
如何在以下情况下合并这两个数据帧:
if df1['BeginDate'] <= df2['IssueDate'] <= df1['EndDate'] and df1['RB']==df2['RB']:
merge the value of df1['Valindex0'] to df2
输出应为:
df2:
RB IssueDate gs Valindex0
0 L3 19990201 8 None
1 00 19820101 G 47 # df2['RB']==df1['RB'] and df2['IssueDate'] between df1['BeginDate'] and df1['EndDate'] of this row
2 48 19820101 G None
3 50 19820101 G None
4 50 19820101 G None
我知道有一种方法可以做到这一点,但速度非常慢:
conditions = []
for index, row in df1.iterrows():
conditions.append((df2['IssueDate']>= df1['BeginDate']) &
(df2['IssueDate']<= df1['BeginDate'])&
(df2['RB']==df1['RB']))
df2['Valindex0'] = np.select(conditions, df1['Valindex0'], default=None)
有没有更快的解决方案?
解决方案
您可以尝试使用SQL,因为在 pandas 中它更复杂:
import pandas as pd
import sqlite3
conn = sqlite3.connect(':memory:')
df_1.to_sql('A', conn, index=False)
df_2.to_sql('B', conn, index=False)
qry = '''
select
B.RB, B.IssueDate, B.gs, A.Valindex0
from
B left join A on
(B.IssueDate between A.BeginDate and A.EndDate and B.RB = A.RB)
'''
df = pd.read_sql_query(qry, conn)
# RB IssueDate gs Valindex0
# 0 L3 19990201 8 NaN
# 1 00 19820101 G 47.0
# 2 48 19820101 G NaN
# 3 50 19820101 G NaN
# 4 50 19820101 G NaN
相关文章